
© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 11

CLASSIFICATION ALGORITHM: WEB FIREWALL

Muhammad Saidu Aliero 1, Bilyaminu Isah Shamaki 2, Abdulazeez Muhammad Bello 3,

Ibrahim abubakar4, Bashar Umar Kangiwa5

1 ICT, Kebbi State University of Science and Technology Aliero, Nigeria
2National Space Research and Development Agency, Nigeria

3Waziri umaru federal polytechnic birnin kebbi, Nigeria
4Asset management department Nigerian deposit insurance corporation, Nigeria

5Department of computer science, Kebbi State University of Science and Technology Aliero, Nigeria

Abstract

SQL Injection Attack (SQLIA) is one of the most severe

attacks that can be used against web database

driven applications. Attackers’ use SQLIA to get

unauthorized access and perform un-authorize data

modification as result of improper input validation

by web application developers. Various studies have

shown that average of 64% of web application of

worldwide are vulnerable to SQLIA as result of their

vulnerability.

To mitigate the devastating problem of SQLIA, this

research proposed web application firewall for SQL

injection Attack (SQLIA) that protects unauthorized

users from SQLIA. Recent study shows that there is

need for improving effectiveness of existing SQLIA

firewall to reduce the Loss of data, getting vital

information and risk of being attack as result of

inaccurate false negative and false positive result

reported by the SQLIA. The research focus on

improving effectiveness of SQLIA firewall by

proposing web application firewall for blind and

tautology SQLIA in order to help minimizing of false

positive an false negative result as well as to provide

the room for improving proposed SQLIA by the

potential researchers.

 To test and validate the accuracy of research work,

three vulnerable web applications were developed

with different type of vulnerabilities and accuracy

metric were used to analyze the result of three

experiments. The result of analysis shows significant

improvement by achieving 88.8%. Accuracy for the

first experiment, 77% accuracy for the second

experiment and 73% accuracy for the third

experiment and overall of 79.6%.

Keyword: Classification, web firewall, web security,

injection attacks SQL injection

1.INTRODUCTION

Web applicatios are associated with diffirent types of

vulnerabilities such as Cross- Site –Scritping (XSS), SQL

Injection, File Includion, Brute Force among other

vulnerabilities. The most common techniques by web

application can be prevented against malacious request

is to deployed web application firewalls. A web firewall

is a system for detecting of web application attacks. Web

firewalls are used for a variety of purposes. Most

prominently, they are one of the main barriers between

stored database and client accessing the data to prevent

it from SQL injection attacks. SQL injection attack is

attacks can be performed against web driving database

application to execute un-authorized data

manipulations and retrievals.

 Web firewall can be use as barrier against SQL injection

attacks. Most of studies argue that the best approaches

by which filter can be applied to differentiate- between

malicious and valid request to application, such as

blacklisting, whitelisting, pattern matching. However,

attack score is getting increase every year regardless of

firewall deployed in various applications. As suggested

by many studies, this could be because of technological

advancement and technical logic of the attackers every

day new attack patterns are constructed to bypass

existing firewalls as well as many of the deployed firewall

are not effective enough to detect existing and newly

constructed attacks.

A logical approach to tackle this problem is, to deploy

web firewall to block malicious request. There are

numbers of commercial as well as open web application

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 12

firewall available to perform security test, detection and

prevention. However, most of these firewall tools have

problem regarding low coverage detection and

reporting high percentage of false positive attacks.

2.OVERVIEW OF SQLIA WEB FIREWALL DESIGNING

APPROACH

Design is the process of transforming all information

gathered and structured in phase 1 into concrete idea

about the new or replacement of new information

system. It’s not recommended to start coding a new

system without having demented details on how system

component are brought together, how different

component of system interact, and classifying

dependent and non- depended components. This

section provide the details architecture, activities and

algorithm design of propose web firewall.

2.1. Architecture of Proposed SQLI Web Firewall

Proposed SQLIA web firewall architecture consist of six

components event interceptor, tokenization, parser,

abstract syntax tree generation, pattern matching and

classifier. These components represent basic

fundamental elements for structuring proposed SQLIA

web firewall. During implementation stage these

components are presented in form of modules, classes,

objects or as a set of related function. The SQLIA web

firewall will consist of component that include, attack

pattern, database of malicious SQL keywords library,

classifier component. Figure 4.1show architecture of

propose SQLIA web firewall.

I. When user provide seed URL, the first component

called event interceptor will filter all query sent to

the web application for malicious request

examination.

II. The second component called tokenizer which

breaks user query into chunk of SQL keywords the

purpose to generate syntax three that will ease the

attack pattern matching activities.

III. The third component is parser which parses blocks

of keywords to syntax tree generator which

generate SQL query tree like structure to identify

strange or unwanted keywords in user query.

IV. The fourth component abstract syntax tree which

represent Source Code as a tree of nodes

representing constants or variables (leaves) and

operators or statements (inner nodes). Also called a

"parse tree". An Abstract SyntaxTree is often the

output of a parser (or the "parse stage" of a

compiler), and forms the input to semantic analysis

and code generation (this assumes a phased

compiler; many compilers interleave the phases in

order to conserve memory).

Unlike concrete syntax, which consists of a linear

sequence of characters and/or tokens, along with a set

of rules for parsing them, abstract syntax doesn't

(generally) have to worry about issues such as parser

ambiguity, operator precedence, etc.

The fifth component is pattern matching that checking

a given sequence of tokens for the presence of the

constituents of some pattern. In contrast to pattern

recognition, the match usually has to be exact. The

patterns generally have the form of either sequences or

tree structures. Uses of pattern matching include

outputting the locations (if any) of a pattern within a

token sequence, to output some component of the

matched pattern, and to substitute the matching pattern

with some other token sequence (i.e., search and

replace).

Sequence patterns (e.g., a text string) are often

described using regular expressions and matched using

techniques such as backtracking.

Tree patterns are used in some programming languages

as a general tool to process data based on its structure,

e.g., Haskell, ML, Scala and the symbolic mathematics

language Mathematical have special syntax for

expressing tree patterns and a language construct for

conditional execution and value retrieval based on it. For

simplicity and efficiency reasons, these tree patterns lack

some features that are available in regular expressions.

Often it is possible to give alternative patterns that are

tried one by one, which yields a powerful conditional

programming construct. Pattern matching sometimes

includes support for guards.

Term rewriting and graph rewriting languages rely on

pattern matching for the fundamental way a program

evaluates into a result.

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 13

Fig2. Architecture of propose sqlia firewall

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 14

Fig. Algorithm for Proposed SQLIA Web Firewall

2.2. Algorithm of Proposed SQLIA firewall

Algorithm design is one of the fundamental element in

software design, it describe steps, procedure, sequence,

variable and decision that needed to brought designed

software into reality. Having algorithm designed enable

developer to examine and image the solution in more

concrete manner. To make proposed SQLIF easier to

implement its component need to need to be divided

into series of phase of processes and decision. This will

reduce the complexity of implementing designed

algorithm. Figure 4.2 below represent the description of

logical procedure proposed SQLI Firewall undergoes to

discover SQLIA in a target application.

3. EXPERIMENT AND RESULT DISCUSSION

Proposed SQLIA web application firewall implement

pattern matching approach is required to understand

how SQL query is constructed is primary for efficient

pattern matching of malicious queries, in effective way.

Many of the reviewed SQLIA firewalls fails to identify

malicious query that has human like’s valid names. For

example consider web application that requires login

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 15

authentication, when users wants to use the system has

to provide the login credential if it happens the user

name has some attack pattern like in his name the

firewall will consider that request to use the system as

malicious query which is valid query.

In figure 5.1 shows the scenario where an attack tries to

exploit the system to get unauthorize access to the

system. As shown in the injection parameters those

attacks patterns will automatically blocked by proposed

SQLIA web application firewalls which almost most the

review web application firewalls are capable of.

Figure 5. 1 Example of SQLI attack patterns injected in three injection parameters

But the problem arise when user with names like Orton,

Anderson and other names that has SQLIA pattern like

in their names try to use the system. As shown in figure

5.2 which most of the review web application have

problem of differentiating from been a valid query.

Figure 5.2 Valid user request which consider as an attack

by many reviewed SQIAWF

As can be seen user Orton try to use the system and his

request to use the system will be blocked by many of

the reviewed web application firewall which is

different from proposed web application firewall

proposed in this research work.

Vulnerable Target Applications Used

Despite there are number of vulnerable applications

designed to allow individual or vendor to validate their

work against attacking tools the research choose to

designed three custom Web applications (See Table 5.5).

One of the reasons in that most of the related web

application firewall studied in literature review are

tested in different scenarios and different security

configuration type therefore , the research chooses to

develop these application to simulate these scenarios so

that each proposed work can be evaluated based on its

original secure web application. Another reason is that

most of the individual or vendors adjust the

effectiveness of their tool with respect to security

configuration in their proposed work which may not

predict effectiveness of the tool in other application as

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 16

different developer have different ways of writing same

query(Antunes and Vieira, 2010), (Djuric, 2013).

The First target application is online human resource

(OHR) application consisting of nine 9 known SQLIA (See

Table 5.3) three error based, one blind SQLIA and two 2

vulnerable login query placed our proposed barrier to

defend against attacking tool which was developed by

our friend . We choose to create more vulnerable pages

on this target because OHR contain almost any

information regarding employee information in an

organization which results in having multiple queries

about employee information for different purpose.

Similarly this application has two different login queries

this is because to differentiate between normal

employee accesses to the system with administrator

access to the system and we know that each department

in organization has one administrator.

The second vulnerable target application is online birds

farming application with nine 9 known SQLIA (See Table

5.3) three (3) blind SQLIA and two vulnerable login

authentication queries.

The third vulnerable application is online news

application with four (4) know SQLIA (See Table 5.3)

one(1) error based SQLIA and one (1) vulnerable login

authentication and two blind SQL injection firewall. The

different between this application and other two

vulnerable applications is that in this a query application

(vulnerable blind SQL injection attack) was designed to

perform information request with of HTTP GET

parameter without using any form input tag. This

practice is mostly found in news website. for example

you may find online news website that provides

description or headline of the news but the actual or

remaining part of the news is stored in database. When

user click on “read more” button then the content of the

news headline is loaded and display to the user. This

type of query is vulnerable to SQLIA.

All three vulnerable target applications are configure

with our SQLIA web application firewall running on

window 7 32 bit operating system and 6GB Ram, first

and second application running on apache 2.4 with

MySQL 5.5.19, and third application running on Apache

2.2.3 with MySQL

5.0.77.

3.1. Experiment 1

The first experiment was carried out on Online Human

Resource Application (OHR) which contain similar

vulnerability used in testing MySQLinjector and other

added vulnerabilities that original author of the scanner

do not include. Propose SQLIA web firewall was able to

intercept queries, tokenize them, and perform malicious

SQL keywords identification and pattern matching

activities. As can be seen below (see Figure 5.3) the input

URL of OHR application is given to attacking scanner

and its display the result (See Figure 5.4).

Propose SQLIA web application firewall identified five

out of six SQLIA injected attacking scanner in HR

application.

This is because propose web application firewall uses to

phase of malicious SQLIA detection and prevention

approach that enable propose SQLIA web firewall to

conclude weather the query is an attack or valid.

 Beside this proposed SQLIA web firewall can prevent

against blind SQLIA and block tautology SQLIA of

various patterns which present big challenge by

previous works. However propose SQLIA web

application firewall failed to block attacks of the

tautology SQLIA. In this experiment propose SQLIA web

application firewall achieved 88% accuracy on two

different types of SQLIA (tautology and blind SQLIA)

when measure using accuracy metrics (see Section 5.4.1

in Figure 5.5)

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 17

Figure 5.3: Input URL for the OHR vulnerable application

Figure 5.4: defensive result of OHR application

3.1.1. Result Analysis

This section present metrics use to evaluate the accuracy

of propose SQLIV scanner. This analysis is similar to the

one used in evaluating previous work

ACCURACY FOR EXPERIMENT 1= TPA/TKA * 100,

FPA/TKN *100

Total number of true positive attacks (TPA) =8, Total

number of known (TKA) =9 Therefore, ACCURACY = 8/9

* (100%), =88%

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 18

Total number of false positive Attack (FPV) =1, Total

number of known attacks (TKA)=6 Therefore,

ACCURACY = 1/9 * (100%) , =11%

Propose SQLIA web application firewall achieved 83.3%

coverage of true positive and 11% false positive

compare in (Diksha G. Kumar and Madhumita

Chatterjee, 2014) which achieved 81.7% coverage of true

positive and 18.3% false positive. Similarly proposed

SQLIA web application firewall achieved less coverage of

true positive attacks when compare with (Baohua Hung,

Tongyi Xie and Yan Ma, 2015) achieved 79% and missing

only 21% of vulnerabilities on target applications.

Because the authors in (Hossain Shahriar and

Mohammad Zulkernine, 2015) claimed to update the

database of attacks patterns used by thereby producing

more accurate result compare to previous work which

achieved 82%.

3.2 Experiment 2

Second experiment was on Farm Online application

consisting of five (5) vulnerable queries: two login

queries (” admin.php “and “Login.php”), three vulnerable

search queries This experimental setup is similar to

setup used in OHR vulnerable application the only

difference is in query used here have the catching

approach to return custom error messages when

abnormal query is received by the database server.

Similarly in HR the login.php query is designed to

connect the ser/employee to application if the query

return at least one record (which is easy to bypass using

tautology SQL injection attack) while in farm application

the login.php is more difficult to bypass using simple

tautology attack because it compares not number of

true record return but actual rows returned by the query.

To prevent above mentioned SQLIA it is required for

propose SQLIA web application firewall to perform

careful tokenization of SQL query in effective way. In this

case propose SQLIA web application firewall pattern

matching to deduce query with high potential to been

malicious in target web application. Propose SQLIA web

application firewall successfully blocked tautology

SQLIA injected by attacking scanner. As can be seen

below (See Figure 5.5) input URL of Farm application is

given to attacking scanner and proposed SQLIA web

application firewall successfully identified total number

of four (4) SQL injection attacks send by attacking

scanner out of five as display in Figure 5.6. In this

experiment propose SQLIA web application firewall

achieved 80% accuracy when measure using accuracy

metrics (see section 5.5.1 and in Figure 5.7)

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 19

Figure 5.4: Input URL for the Newdesign vulnerable application

Figure 5.5: defensive result of Newdesign vulnerable application

3.2.1. Result Analysis

This section present analysis result similar to the

experimental setup used (Diksha G. Kumar and

Madhumita Chatterjee, 2014), (Hossain Shahriar and

Mohammad Zulkernine, 2015) previously compare with

propose proposed SQLIA web application firewall (see

section 5.4.1) however there is little difference between

how these two applications (OHR and Farm) are

designed in their queries (see section 5.4) . As mention

earlier that both previous methods are only effective if

target application attacks user’s name do not have any

similarities with SQLIA pattern defined in database of

attacks patterns libraries. It’s not surprise to (Hossain

Shahriar and Mohammad Zulkernine, 2015) achieved

69.3%. This is because these scanners are tested on

application that is configure to block only attacks that

has SQLIA attacks pattern which is statistically define in

database of SQLIA.

Previous web application firewall missed such kind of

attack in a target application; therefore, the focus of

research in this experiment is to improve the pattern

matching in previous work Diksha G. Kumar and

Madhumita Chatterjee, 2015) by achieving 60% to be

able to differentiate between valid users query and

malicious users queries.. Result of this analysis (see

Figure 5.7) shows that proposed SQLIA web application

fire wall achieved 77% accuracy and misses 23% of

injected attacks by SQLI attacking scanner on tested

application.

Total number of true positive attacks (TPA) =4,

Total number of known attacks (TKA) =5

 Therefore, ACCURACY = 7/9 * (100%), =77%

Total number of false positive attack (FPA) =2,

 Total number of known vulnerability (TKV) =5

Therefore, ACCURACY = 2/9 * (100%), =23%

3.3. Experiment 3

The third experiment is on Online News vulnerable

application which is similar to scenario proposed by

(Hossain Shahriar and Mohammad Zulkernine, 2015).

Propose SQLIA web application firewall successfully

block three malicious queries injected by attacking

scanner in news application URL is given (see Figure 5.8)

but failed to identified one SQLIA as shown in below (see

Figure 5.9). This is because propose SQLIA web

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 20

application firewall tokenizer does not have intelligence

to learn from future attack pattern which is not include

in database of attacks pattern libraries is using one of

the injection parameters (HTTP GET) propose SQLIA web

application firewall claim to be based on (see section

5.2). Including this type of scenario is time consuming

and need to be done carefully otherwise high false

negative result will be produced. In this experiment

propose SQLIA web application firewall achieved 75%

(see Figure 5.10) accuracy when compare using accuracy

metrics.

Figure 5.6: Input URL for the Farm vulnerable application

Figure 5.7: defensive result of Farm application

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 21

3.3.1 Result Analysis

This section present analysis result of proposed SQLIA

web firewall. This setup is different from other two setup

(OHR and Farm setup) as explained earlier (see section

5.3).LIVS proposed in (Djuric, 2013) uses three

vulnerability analysis component as our propose firewall

do. The fore, the focus in this experiment is to improve

accuracy in (Hossain Shahriar and Mohammad

Zulkernine, 2015).

Experimental result shows that web application firewall

in to (Hossain Shahriar and Mohammad Zulkernine,

2015) achieved 64% accuracy while reporting 36% false

positive. In this experiment proposed SQLIA web

application firewall achieved 75% accuracy and report

with 25% false positive (see Figure 5.10). Although in this

research only PHP applications platforms ware

considered unlike experiment in (Djuric, 2013) in which

three different applications platform ware used to

validate proposed web firewall.

ACCURACY FOR EXPERIMENT 3= TPV/TKV * 100,

FPV/TKN *100

Total number of true positive attack (TPA) =3,

 Total number of known attack (TKA) =4

Therefore, ACCURACY = 3/4 * (100%) , =75%

Total number of false positive attack (FPA) =1,

 Total number of known attack (TKA)=4

Therefore, ACCURACY = 1/4 * (100%) , =25%

4. RESEARCH FINDINGS

This research has used three different applications with

different scenarios for preventing SQLIA attack to

overcome issue faced by most previous work, as noted

early in this research. (See chapter 1 section 1.2) The

proposed research woks as intended to introduced

pattern matching approach to combat SQL attack by

proposing web application firewall as barrier. The

research have achieved low false alarm and improve

the effectiveness of true number of SQLI Attack as

indicated in section 5 (See experiments and analysis)

The result of proposed research in presented in Chapter

5 has show quite improvement with first experiment

accuracy 88%, second experiment with 77% and third

experiment 79.4% accuracy as presented in Chapter 5

Figure 5.4, Figure 5.7 and Figure 5.10 respectively.

5. RESEARCH CONTRIBUTION

The research work contribute to overcoming challenge

of false alarm (false negative and false positive) SQLI

attacks by existing web application firewall, which is

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 22

common problem in field of SQLI attacks detection and

prevention tools.

The contribution aspect of this work is as follows:

I. Improve pattern matching mechanism to recognize

and Malicious SQLI attack.

II. Research work improves database of SQL attacks

pattern of tautology attack related type to recognize

and block any tautology attack.

III. Research work introduced new way of preventing

blind SQLI Attack by grouping potential malicious

SQLI attack keywords in different database.

6. CONCLUSION

Combating SQLI attacks on Web-based database

driving applications required frequent SQL injection

vulnerability assessment patches. Applying manual SQL

injection vulnerability assessment is required knowledge

of how SQL injection vulnerability looks like and how to

exploit them. Similarly Manual inspection of SQL

injection Attack web firewall is time consuming, costly

mostly leave dangerous SQL injection vulnerability

undiscovered. In this research an automatic SQL

injection web Attack firewall is being proposed to enable

SQL injection vulnerability assessment in effective way.

This research in Chapter 1 section two clarified the two

major issues of current SQL Web application firewall; fist

is low detection of injected SQL attack and reporting

high false negative SQL attacks in target application.

These issues present a challenge to security

administrator during while trying to SQL injection threat.

A number of techniques and method has been

proposed (See chapter 2) to tackle this challenge

however, none of them have completely address this

challenge.

Alternately, this research proposed SQL injection web

application firewall that applies SQL prevention in

dynamic way. This research has been conducted to

reduced number of false negative and false positive

result of SQL injection web application firewall. To

evaluate the proposed SQL injection web application

firewall with respect to various literatures studied this

research chooses to conduct three different experiment

to simulate similar scenarios that related researches

have been conducted and accuracy matrices were use to

analyze the result.

7. FUTURE WORK

Propose web application firewall faces two major

challenges. One is in ability detect new future tautology

and blind SQLI attacks that have not been included in

propose signature pattern. With time constraint the

study could not able to develop pattern that will able to

learn from future attacks of same type considered.

Another challenge faced by proposed web application

firewall is reporting of similar attacks more than one

times which result in false positive alarm. This is one of

the reasons why proposed firewall report average of

27% of false positive alarm.

 In short the future research work to address on this

work is as follows:

i. Improving firewall pattern matching

ii. Updating database of blind and tautology SQLI

attacks signatures.

iii. Reducing number of false negative alarm by

introducing two ways detection approach.

REFERENCES

[1] Acunetix. (2013). Accunetix Vulnerability

Scanner. Retrieved 29/06/2015, from

https://www.acunetix.com/vulnerability-

scanner/

[2] Agosta, Giovanni, Barenghi, Alessandro, Parata,

Antonio, & Pelosi, Gerardo. (2012). Automated

security analysis of dynamic web applications

through symbolic code execution. Paper

presented at the Information Technology: New

Generations (ITNG), 2012 Ninth International

Conference on.

[3] Antunes, Nuno, & Vieira, Marco. (2009a).

Comparing the effectiveness of penetration

testing and static code analysis on the detection

of sql injection vulnerabilities in web services.

Paper presented at the Dependable Computing,

2009. PRDC'09. 15th IEEE Pacific Rim

International Symposium on.

[4] Antunes, Nuno, & Vieira, Marco. (2009b).

Detecting SQL injection vulnerabilities in web

services. Paper presented at the Dependable

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 23

Computing, 2009. LADC'09. Fourth Latin-

American Symposium on.

[5] Antunes, Nuno, & Vieira, Marco. (2010).

Benchmarking vulnerability detection tools for

web services. Paper presented at the Web

Services (ICWS), 2010 IEEE International

Conference on.

[6] Antunes, Nuno, & Vieira, Marco. (2011).

Enhancing penetration testing with attack

signatures and interface monitoring for the

detection of injection vulnerabilities in web

services. Paper presented at the Services

Computing (SCC), 2011 IEEE International

Conference on.

[7] Antunes, Nuno, & Vieira, Marco. (2012).

Evaluating and improving penetration testing in

web services. Paper presented at the Software

Reliability Engineering (ISSRE), 2012 IEEE 23rd

International Symposium on.

[8] Antunes, Nuno, & Vieira, Marco. (2015).

Assessing and Comparing Vulnerability

Detection Tools for Web Services:

Benchmarking Approach and Examples.

Services Computing, IEEE Transactions on, 8(2),

269-283.

[9] Appelt, Dennis, Nguyen, Cu Duy, Briand, Lionel

C, & Alshahwan, Nadia. (2014). Automated

testing for SQL injection vulnerabilities: an input

mutation approach. Paper presented at the

Proceedings of the 2014 International

Symposium on Software Testing and Analysis.

[10] Bandhakavi, Sruthi, Bisht, Prithvi, Madhusudan,

P, & Venkatakrishnan, VN. (2007). CANDID:

preventing sql injection attacks using dynamic

candidate evaluations. Paper presented at the

Proceedings of the 14th ACM conference on

Computer and communications security.

[11] Bau, Jason, Bursztein, Elie, Gupta, Divij, &

Mitchell, John. (2010). State of the art:

Automated black-box web application

vulnerability testing. Paper presented at the

Security and Privacy (SP), 2010 IEEE Symposium

on.

[12] Boyd, Stephen W, & Keromytis, Angelos D.

(2004). SQLrand: Preventing SQL injection

attacks. Paper presented at the Applied

Cryptography and Network Security.

[13] Buehrer, Gregory, Weide, Bruce W, & Sivilotti,

Paolo AG. (2005). Using parse tree validation to

prevent SQL injection attacks. Paper presented

at the Proceedings of the 5th international

workshop on Software engineering and

middleware.

[14] Cenzic’s. (2014). Application Vulnerability

Trends Report: 2014. Retrieved 29/09/2015,

from https://www.info-point-

security.com/sites/default/files/cenzic-

vulnerability-report-2014.pdf

[15] Chen, Jan-Min, & Wu, Chia-Lun. (2010). An

automated vulnerability scanner for injection

attack based on injection point. Paper

presented at the Computer Symposium (ICS),

2010 International.

[16] Cheon, Eun Hong, Huang, Zhongyue, & Lee,

Yon Sik. (2013). Preventing SQL Injection Attack

Based on Machine Learning. International

Journal of Advancements in Computing

Technology, 5(9).

[17] Cho, Ying-Chiang, & Pan, Jen-Yi. (2015). Design

and Implementation of Website Information

Disclosure Assessment System. PloS one, 10(3),

e0117180.

[18] Ciampa, Angelo, Visaggio, Corrado Aaron, & Di

Penta, Massimiliano. (2010). A heuristic-based

approach for detecting SQL-injection

vulnerabilities in Web applications. Paper

presented at the Proceedings of the 2010 ICSE

Workshop on Software Engineering for Secure

Systems.

[19] Cook, William R, & Rai, Siddhartha. (2005). Safe

query objects: statically typed objects as

remotely executable queries. Paper presented

at the Software Engineering, 2005. ICSE 2005.

Proceedings. 27th International Conference on.

[20] Djuric, Zoran. (2013). A black-box testing tool

for detecting SQL injection vulnerabilities. Paper

presented at the Informatics and Applications

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 24

(ICIA), 2013 Second International Conference

on.

[21] Falcove. (2007). Falcove Web Vulnerability

Scanner and Penetration Testing. Retrieved

29/06/2015, from

http://www.ramsayfalcove.com/htdocs/Welco

me.html

[22] Fu, Xiang, Lu, Xin, Peltsverger, Boris, Chen,

Shijun, Qian, Kai, & Tao, Lixin. (2007). A static

analysis framework for detecting SQL injection

vulnerabilities. Paper presented at the

Computer Software and Applications

Conference, 2007. COMPSAC 2007. 31st Annual

International.

[23] Gartner. (June 19, 2014). WEB APPLICATION

ATTACK REPORT #5. Retrieved 29/06/2015,

from

http://www.imperva.com/docs/hii_web_applica

tion_attack_report_ed5.pdf

[24] Grendel.). Grendel-Del Web vulnerability

Scanner. Retrieved 29/06/2015, from

http://sectools.org/tool/grendel-scan/

[25] Halfond, William GJ, & Orso, Alessandro. (2007).

Detection and prevention of sql injection

attacks Malware Detection (pp. 85-109):

Springer.

[26] Huang, Shih-Kun, Lu, Han-Lin, Leong, Wai-

Meng, & Liu, Huan. (2013). Craxweb: Automatic

web application testing and attack generation.

Paper presented at the Software Security and

Reliability (SERE), 2013 IEEE 7th International

Conference on.

[27] Huang, Yao-Wen, Tsai, Chung-Hung, Lin,

Tsung-Po, Huang, Shih-Kun, Lee, DT, & Kuo, Sy-

Yen. (2005). A testing framework for Web

application security assessment. Computer

Networks, 48(5), 739-761.

[28] Huang, Yao-Wen, Yu, Fang, Hang, Christian,

Tsai, Chung-Hung, Lee, Der-Tsai, & Kuo, Sy-Yen.

(2004). Securing web application code by static

analysis and runtime protection. Paper

presented at the Proceedings of the 13th

international conference on World Wide Web.

[29] IBM. (2013). IBM Web Application Scanner.

Retrieved 29/06/2015, from http://www-

03.ibm.com/software/products/en/appscan

[30] Inspect, HP. (2012). HP Inspect Vulnerability.

Retrieved 29/06/2015, from

http://sectools.org/tool/webinspect/

[31] Jnena, Rami MF. (2013). Modern Approach for

WEB Applications Vulnerability Analysis. The

Islamic University of Gaza.

[32] Joshi, Anamika, & Geetha, V. (2014). SQL

Injection detection using machine learning.

Paper presented at the Control,

Instrumentation, Communication and

Computational Technologies (ICCICCT), 2014

International Conference on.

[33] Kals, Stefan, Kirda, Engin, Kruegel, Christopher,

& Jovanovic, Nenad. (2006). Secubat: a web

vulnerability scanner. Paper presented at the

Proceedings of the 15th international

conference on World Wide Web.

[34] Khoury, Nidal, Zavarsky, Pavol, Lindskog, Dale,

& Ruhl, Ron. (2011). An analysis of black-box

web application security scanners against

stored SQL injection. Paper presented at the

Privacy, Security, Risk and Trust (PASSAT) and

2011 IEEE Third Inernational Conference on

Social Computing (SocialCom), 2011 IEEE Third

International Conference on.

[35] Kumar, Praveen. (2013). The multi-tier

architecture for developing secure website with

detection and prevention of sql-injection

attacks. International Journal of Computer

Applications, 62(9), 30-35.

[36] Lawal, MA, Sultan, Abu Bakar Md, & Shakiru,

Ayanloye O. (2016). Systematic Literature

Review on SQL Injection Attack. International

Journal of Soft Computing, 11(1), 26-35.

[37] Liban, Abdilahi, & Hilles, Shadi. (2014).

Enhancing Mysql Injector vulnerability checker

tool (Mysql Injector) using inference binary

search algorithm for blind timing-based attack.

Paper presented at the Control and System

Graduate Research Colloquium (ICSGRC), 2014

IEEE 5th.

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1239 WWW.IJCIRAS.COM 25

[38] Liu, Anyi, Yuan, Yi, Wijesekera, Duminda, &

Stavrou, Angelos. (2009). SQLProb: a proxy-

based architecture towards preventing SQL

injection attacks. Paper presented at the

Proceedings of the 2009 ACM symposium on

Applied Computing.

[39] Livshits, V Benjamin, & Lam, Monica S. (2005).

Finding Security Vulnerabilities in Java

Applications with Static Analysis. Paper

presented at the Usenix Security.

[40] McClure, Russell A, & Kruger, Ingolf H. (2005).

SQL DOM: compile time checking of dynamic

SQL statements. Paper presented at the

Software Engineering, 2005. ICSE 2005.

Proceedings. 27th International Conference on.

[41] Medhane, Munqath H Alattar SP. R-WASP: Real

Time-Web Application SQL Injection Detector

and Preventer.

[42] N-Stalker. (27 Feb. 2014,). N-Stalker Web

Vulerability Scanner. Retrieved 29/06/2015,

from

http://www.windowsecurity.com/software/Web

-Application-Security/N-Stalker-Web-

Application-Security-Scanner.html

[43] Nguyen-Tuong, Anh, Guarnieri, Salvatore,

Greene, Doug, Shirley, Jeff, & Evans, David.

(2005). Automatically hardening web

applications using precise tainting: Springer.

[44] OWSAP. (2013). Top 10 Vulnerability 2013 by

Open Web Security Project. Retrieved

29/06/2015, from

https://www.owasp.org/index.php/Top_10_201

3-Top_10

[45] Qu, Binbin, Liang, Beihai, Jiang, Sheng, &

Chutian, Ye. (2013). Design of automatic

vulnerability detection system for Web

application program. Paper presented at the

Software Engineering and Service Science

(ICSESS), 2013 4th IEEE International Conference

on.

[46] Scott, David, & Sharp, Richard. (2002).

Abstracting application-level web security.

Paper presented at the Proceedings of the 11th

international conference on World Wide Web.

[47] Shahriar, Hossain, & Zulkernine, Mohammad.

(2012). Information-theoretic detection of sql

injection attacks. Paper presented at the High-

Assurance Systems Engineering (HASE), 2012

IEEE 14th International Symposium on.

[48] Shar, Lwin Khin, & Tan, Hee Beng Kuan. (2012).

Predicting common web application

vulnerabilities from input validation and

sanitization code patterns. Paper presented at

the Automated Software Engineering (ASE),

2012 Proceedings of the 27th IEEE/ACM

International Conference on.

[49] Shin, Yonghee, Williams, Laurie, & Xie, Tao.

(2006). Sqlunitgen: Sql injection testing using

static and dynamic analysis. Paper presented at

the 17th IEEE International Conference on

Software Reliability Engineering, ISSRE.

[50] Singh, Avinash Kumar, & Roy, Sangita. (2012). A

network based vulnerability scanner for

detecting SQLI attacks in web applications.

Paper presented at the Recent Advances in

Information Technology (RAIT), 2012 1st

International Conference on.

[51] Thiyagarajan, A, Uma, S, Vipin, Ambat, & Dheen,

Najeem. (2015). METHODS FOR DETECTION

AND PREVENTION OF SQL ATTACKS IN

ANALYSIS OF WEB FIELD DATA.

[52] Tiwari, Yash, & Tiwari, Mallika. (2015). A Study of

SQL of Injections Techniques and their

Prevention Methods. International Journal of

Computer Applications, 114(17).

[53] Valeur, Fredrik, Mutz, Darren, & Vigna, Giovanni.

(2005). A learning-based approach to the

detection of SQL attacks Detection of Intrusions

and Malware, and Vulnerability Assessment (pp.

123-140): Springer.

[54] Zhang, Xin-hua, & Wang, Zhi-jian. (2010).

Notice of Retraction A Static Analysis Tool for

Detecting Web Application Injection

Vulnerabilities for ASP Program. Paper

presented at the e-Business and Information

System Security (EBISS), 2010 2nd International

Conference on.

