
© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 26

WEB APPLICATION FIREWALL: REVIEW

Muhammad Saidu Aliero1
, Bilyaminu Isah Shamaki2, Ibrahim abubakar3, Bello shamsudden

kalgo4, Abdul-azeez Muhammad Bello5

1ICT, Kebbi State University of Science and Technology Aliero, Nigeria
2National Space Research and Development Agency, Nigeria

3Asset management department Nigerian deposit insurance corporation, Nigeria
4Ministry Of Health Birnin Kebbi, Nigeria

5Waziri Umaru federal polytechnic Birnin kebbi, Nigeria

Abstract

SQL injection attack (SQLIA) is one of the most severe

attacks that can be used against web database

driving applications. Attackers use SQLIA to get

unauthorized access and perform unauthorized data

modification. To combat problem of SQLIA, different

researchers proposed variety of tools and methods

that can be used as defense barrier between client

application and database server. However, these

tools and methods failed to address the whole

problem of SQL injection attack, because most of the

approaches are vulnerable in nature, cannot resist

sophisticated attack or limited to scope of subset of

SQLIA type. with regard to this different researchers

proposed different approach (experimental and

analytical evaluation) to evaluate the effectiveness

of these existing tools based on type SQLIAs they can

detect or prevent. However, none of the researcher

considers evaluating these existing tool or method

based on their ability to be deployed in various

injection parameters or development requirements

therefore, in this we analytically evaluated the

reviewed tools and methods based on our experience

with respect to SQIAs types and injection parameters.

The evaluation result showed that most researchers

focused on proposing approaches to detect and

prevent SQLIAs, rather than evaluating the efficiency

and effectiveness of the existing SQLIA detection and

prevention tools/methods. The study also revealed

that more emphasis was given by the previous

studies on prevention measures than detection

measures in combating problem of SQLIAs. An

analysis showed that these tools and methods are

developed to prevent subset of SQLIAs type and only

few of them can be deployed to various injection

parameters to be considered in examining SQLIAs. It

further revealed that none of the tools or methods

can be deployed to prevent attacks that can take

advantage of second order (server side SQLIA) SQLI

vulnerability. Finally, the study highlights the major

challenges that require immediate response by

developers and researchers in order to prevent the

risk of being hacked through SQLIAs.

Keyword: Malicious link, web application, web

application security, web application vulnerably

dynamic approach, analytical evaluation

1.INTRODUCTION

Web applicatios are associated with diffirent types of

vulnerabilities such as Cross- Site –Scritping (XSS), SQL

Injection, File Includion, Brute Force among other

vulnerabilities. The most common techniques by web

application can be prevented against malacious request

is to deployed web application firewalls. A web firewall

is a system for detecting of web application attacks. Web

firewalls are used for a variety of purposes. Most

prominently, they are one of the main barriers between

stored database and client accessing the data to prevent

it from SQL injection attacks. SQL injection attack is

attacks can be performed against web driving database

application to execute un-authorized data

manipulations and retrievals.

 Web firewall can be use as barrier against SQL injection

attacks. Most of studies argue that the best approaches

by which filter can be applied to differentiate- between

malicious and valid request to application, such as

blacklisting, whitelisting, pattern matching. However,

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 27

attack score is getting increase every year regardless of

firewall deployed in various applications.

Therefore this study aimed to explore current detection

and prevention tools and mechanisms and identify

weaknesses and recommend future improvements. The

result of our analysis could be serve as based evident for

future improvement by a researchers.

2. BACKGROUND OF WEB APPLICATIONS ATTACKS

Expert shows that new vulnerabilities that are found in

cyber environment are much higher in applications level

than in operating system. There are number of standard

organizations such as System Administration, Network

and Security (SAN) Open Web Application Security

Project, and so on, that keep track of new found

vulnerabilities as well as vulnerabilities that present

higher risk to any organization adopting web

applications as backbone of their business. These

organization filed monthly and yearly report regarding

new and top vulnerabilities presenting high risk to web

application to create awareness to the people in order

to reduced risk of being

hacked as result of such vulnerabilities. Below are the

description of top 10 2013

(Gartner, June 19, 2014, OWSAP, 2013).

A1. Injection flows: Injection flaws (such as SQL, OS,

and LDAP injection) are type of web application

vulnerabilities that occur when inputs from user are

being sent to interpreter without proper sanitization.

This allow attacker to trick interpreter by processing

unintended query or command thereby gaining

unauthorized access or data manipulations

A2. Broken Authentication and Session

Management: Broken authentication and session

management occur when functions associated with

authentication and session management are not well

implemented. This allow attacker to compromise

passwords, keys, or session tokens, or to exploit other

implementation flaws to assume other users’ identities.

A3. Cross Site Scripting (XSS): Injection flows take un-

trusted data and send it interpreter without sanitization

while XSS flow occur when web applications are allowed

to received un-trusted data without proper sanitization.

This allow attacker to write script that enable them to

redirect user into malicious page or site thereby stealing

user information as well as session hijacking.

A4. Insecure Direct Object Reference: It is common

mistake by programmer to expose object reference to

internal implementation such as file, directory, and

database key and so on to the end user. This practice

allow attacker to manipulate these reference to gain

unauthorized access to restricted information.

A5. Security Miss-configuration: Using default

configuration without any security in mind increases the

chance of being hacked. It is always recommended to

reconfigure, application server, web server, database

server, and platform. Security miss-configuration allow

attacker to exploit default configuration vulnerability

exist in technology being used in application. Likewise

lack of frequent update of software technology result in

exploiting new found vulnerabilities in application.

A6. Sensitive Data Exposure: Sensitive data exposure

occur when web application transferring confidential

information such as monetary transaction, user

credential without proper protection. This practice

enable adversary to intercept, modify, reply to users

transactions. Sensitive data exposure can be reduced by

applying proper cryptographic technique to

communication medium.

A7. Missing Function Level Access Control: Applying

authentication to access application functionality is very

important; however applications need to perform the

same access control checks on the server when each

function is accessed. If requests are not verified,

attackers will be able to forge requests in order to access

functionality without proper authorization.

A8. Cross-Site Request Forgery (CSRF): XSS

vulnerability enable attacker to impersonate trust that

exist between web application and user by secretly

tricking user to access malicious page, while CSRF

exploit trust between user and web application by

forcing the victim’s browser to generate requests the

vulnerable application thinks are legitimate requests

from the victim.

A9. Using Components with Known Vulnerabilities:

Using vulnerable component that run with full privileges

allowed attacker to escalade an attack by exploiting

result in serious data loss or server takeover.

Applications using components with known

vulnerabilities may weakened application defense and

enable a range of possible attacks and impacts.

A10. Un-validated Redirects and Forwards: User

interaction with Web applications frequently involved

redirect and forward from to other pages and websites.

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 28

Thus using un-trusted data without proper validation,

attackers can redirect users to phishing or malware sites,

or use forwards to access unauthorized pages. Despite

danger that above mentioned web applications

vulnerabilities present to enterprise information asset,

this project will focus on SQL injection Vulnerabilities

with emphasis on developing tool that will be use in

performing SQL injection web firewall assessment.

2.1. Background of SQLI attacks

Most database driving applications required users to log

into the application order to have access the information

stored in information system. By login into the system

users can have full access to the information to him

cannot or have limited access other’s information

depending on the purpose of the application. However,

because of the dynamic feature of SQL query and logical

knowledge possessed by other people on how

communications between application layer and

database layer are constructed, it became possible for

them manipulate these commutation to have

unauthorized access to the system, bypass

authentication mechanisms and unauthorized data

manipulation on backend database through injection

parameters (input provide to user to make request to

application such as forms) without being login into the

system or without proper login credential (Bau et al.,

2010).

This is possible because developer of the system trust

the end users by not considering security threat at a time

of developing the query which is handling the users

request, processes it and send respond back to the

users. A query that is accepting whatever

input provided by the user and send it to the backend

database of the application for processing without

proper security check is called vulnerable query and can

be subjected to SQL injection attack. The more details

on how SQL injection attacks are been discovered can

be described in the sections below.

2.2.1. Injection Parameters

(Halfond and Orso, 2007) and (Sadeghian et al., 2013)

points by which an attackers inject SQL injection attacks

into following injection through user input field, through

cookies, through server variables, second order injection

as shown in fig 1.0.

 Fig 1.0 Injection parameters

Through User input field: user input fields are provided

in web applications to enable web application users to

request information from backed database to the user

with help of HTTP POST and GET. These inputs are

connected with backend database using SQL statements

to retrieve and render requested information for users

or to allow users to connect to the system. User input

fields are vulnerable to SQL injection attack if input

provided by the user is not sanitized before sending to

the database engine for processing, which enables

attackers to modify intended queries in order to perform

malicious action in the system.

Injection through cookies: Cookies are structures that

maintain persistence of web application by storing state

information in the client machine. When a client returns

to a Web application, cookies can be used to restore the

client’s state information. If a Web application uses the

cookie’s contents to build SQL queries, then an attacker

can take this opportunity to modify cookies and submit

to the database engine.

Injection through server variables: Server variables

are a combination of variables that include HTTP,

network headers, and environmental variables. Web

applications use these server variables in variety of ways,

such as monitoring statistical usage of and determining

browsing trends. Using these variables in web

applications without proper validation, will course

injection vulnerabilities which allows attackers to change

values that are in HTTP and network headers by entering

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 29

their crafted input into the client-end of the application

or by injecting malicious request.

Second order injection: In second-order injections,

attackers plant malicious inputs into a system or

database to indirectly trigger an SQLIA. When that input

is called at a later time when an attack occurs, the input

that modifies the query to construe an attack does not

come from the user, but from within the system itself.

2.2.2. SQLIA (SQL Injection Attack) Intent

Attacks can be classified based on what attacker trying

to achieve or intent to do (Amirtahmasebi et al., 2009)

and (Halfond and Orso, 2007) Identifying injection

parameters, database fingerprinting, identifying

database schema, database extraction, executing

remote code, performing privilege escalading and

authentication bypassing.

Identifying Injectable Parameters: Injectable

parameters are text-input that allow users to request

information from the database. This query request is

sent to the database server though HTTP request, for

example ULR; search box and authentication entries are

considered as text-input. When these text-input are

sending user requests to the database without proper

validation they are considered as injectable parameters

which allow attackers to inject SQL query attack.

Identifying injection parameters is the first step to

perform an attack.

Performing database fingerprinting: after identifying

the injection parameters the second step is to know the

database engine type and version. Knowing this is very

important to an attacker because it enables him to know

how to construct query format supported by that

database engine and default vulnerability associated

with that version as every database engine employs a

different proprietary SQL language dialect.

Determine database schema: schema is the database

structure. It includes table names, relationships, and

column names. Knowing this information about

database makes it easier for an attacker to construct an

attack to perform database extraction or manipulate

data language.

Database manipulation and extraction: most of the

attacker their aim is gaining access to sensitive

information such as secret formula employee bank

details or changing friend salaries.

Evading detection: well structure attacks are always

very difficult to detect as result of attacker employed the

used of technique that hide his foot step hide malicious

data from security guards implanted so that their actions

cannot be detected or traced.

Executing Remote Commands: file inclusion attack is

one of the precious attack by attacker that enable them

to include file that can be executed by database server,

shell command in order to find their own way into the

system. Once attacker file get executed it will start action

that it was intended to do by attackers such as creating

backdoors, sending secret information, corrupting

system memory and so on.

Bypassing authentication: Bypassing authentication

mechanism is the one of the common aim of almost the

entire attacker, which allows them to gain access to the

database with user privileges.

Performing privilege escalation: when function

responsible for assigning privileges is exposed or was

not properly validated it is possible for an attacker to use

this opportunity to increase his privilege to the system

as some of the database attack requires admin privilege

to be performed.

2.3. SQLI Vulnerability Detection Approaches

Disconnecting enterprise from internet is not reasonable

option to prevent SQLI attack. In order to minimize the

likelihood of successful SQLIA in web application,

researcher proposed different approach to enable

security administrator to identify the course of

vulnerabilities and address them before been exploit by

potential attacker. These approach can be categorized

into two static and dynamic approach (Djuric, 2013,

Livshits and Lam, 2005), (Huang et al., 2004).

3. DEFENSIVE CODING

The primary motive of SQL injection vulnerability is

mistaken validation of person input. Entry validation is a

way by which programmers observe protection code

exercise to cozy every static question manually. One of

the targets of defensive programming is to write at ease

queries so that it behaves in a predictable way in spite

of sudden inputs or user moves. Underneath are some

of the common ways by using which programmer

observe defensive coding in an software. Entry type

checking/data type validation: from time to time

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 30

programmers make easy mistakes by allowing input

fields to simply accept different styles of information

without figuring out that an attacker can take this

opportunity to insert malicious enter to database

engine. Second order injection attacks can be

performed by using injecting instructions into either a

string or numeric parameter. Even a simple check of

such inputs can save many attacks. As an example, in the

case of numeric inputs, i.e. if the sphere is a telephone

quantity, the programmer can truly reject any input that

incorporates characters apart from digits. This method

however cannot guaranty that it's going to fully forestall

the SQL injection but it makes the technique tougher for

the attacker. occasionally an attacker issues sq. injection

attack with a declaration that usually returns a value of

actual in order that to the database engine interprets

user enter as square so that when backend database

engine executes this kind of statement it lets in the user

to bypass authentication mechanisms or use meta-

characters to carry out an unlawful question that allows

you to trick the database engine into offering the

attacker with some mystery data approximately the

backend database. Applying encoding practice along

with hashing, encryption, conversion of enter into ASCI

format prevents attackers from tricking database

engines.

White listening/fine sample matching: there are two

number one principles of sample matching, blacklist and

white listing. Blacklisting includes checking if the input

carries unacceptable statistics at the same time as white

list checks if the input includes desirable statistics.

Programmer should establish input validation workouts

that clear out bad enter and permit proper input. This

approach is commonly called nice validation.

Instead of making dynamic queries by concatenating

the parameters with SQL statement, it will replace the

placeholders with the value of parameters at the runtime

become aware of all input: Parameterized question is a

sort of question which has some placeholders. In these

instead of making dynamic queries by concatenating the

parameters with SQL statement, it will replace the

placeholders with the value of parameters at the runtime

as shown in fig 2. Defensive coding and dynamic

approach.

Fig 2.0 defensive coding approach

3.1. Disadvantage of defensive coding Approach

SQL injection firewall tools implementing static

approach are known to be effective and very accurate in

detecting and preventing SQL injection attacks with not

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 31

false negative or false positive .However this approach

has major drawbacks that make it in adequate to apply

or use in production systems such as intrusive

instrumentation, high performance overheads language

dependence (Garfinkel and Spafford, 2002), (Masanès,

2006, Takanen et al., 2008, Hurty, 1965).

• Intrusive Instrumentation: defensive coding

approach need well gained transformation of the

target application. Every queries in the application

needs to be transformed to introduce additional

statements that propagate taint. Such

instrumentation can affect the stability and enhance

detection of the target application, which result in

making developer reluctant to use these techniques

on production systems.

• High Performance Overheads: defensvie

approach especially those developed in C or binary

code have high tendency of overheads, often

slowing down programs by a factor of two or more.

• Language Dependencies: This is the one of the

features that makes developer to not design tool

that implements defensive approach. defensive

approach always required source code of

application in order to perform security assessment

on target application and it was shown that in

(Garfinkel and Spafford, 2002) source-code based

approach is language dependent and need to be

redesigned and re-implemented for each language.

Even for binary based techniques, it is not straight

forward to apply them across all languages.

For example; applying a machine-code based taint-

tracking to Java requires the JVM to be taint-tracked,

which can pose challenges in terms of false positives and

false negatives. As a result, previous techniques have

either been applicable to Java or to C/C++/compiled

binaries, but not both.

• Security Exposure:

• Defensive coding firewall tool usually required

source of application to perform security

analysis which raise the major challenge in

security point of view. Not all users or enterprise

allow access to their application, this is because

knowing how application was designed will also

make easier to attack application.

3.2. Dynamic Approach

Dynamic security analysis approach is used to detect

and prevent attacks via attack pattern , frequency,

signature. Although, recent studies shows that dynamic

security analysis firewalls are less effective, and less

accurate compare to static security analysis due to their

inability to cover crawling activities, attacks needed to

trigger anomaly and inability to performs deferent type

of analysis on server response. However, even this issue

developer and security

administrators prefers to implement firewall tools in

dynamic approach because of the following reasons

such as language compatibility, users friendly, no source

code required and flexibility (Takanen et al., 2008), (Arkin

et al., 2005).

• Language Compatibility : Most of the SQL

injection vulnerabilities scanners implemented

in C, Java, Python or any other programming

language can performs vulnerability assessment

in application in respect of the type of language

target application was designed. For example

static vulnerability scanner designed to assess

PHP application cannot be effectively used to

asses application design in Java platform.

• User Friendly: Static vulnerability scanner

required the user to have knowledge of how

vulnerability looks like in order to effectively

determine whether vulnerability exist in the

application. In case of dynamic approach user

do not worry about how vulnerability are been

discover in application in order to perform full

security assessment on application (Luk et al.,

2005).

• No Source Code is Required: This is the one of

the major advantage of dynamic SQL injection

assessment scanners over static one, which is

ability to perform security assessment without

providing the source code of application. This is

because most of the organization/individuals

do not approves the external parties to have

access to the source code of their application

which might raise other security concern

(Garfinkel and Spafford, 2002).

• Flexibility: Ability for scanner to perform more

than one analysis on responds return by the

application server. For example most of the SQLI

static vulnerability scanners can only detect

particular vulnerability type while in dynamic

approach developer can simulate as much as

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 32

number of analysis component needed to

perform SQLIV analysis.

3.3. Review on Static and Dynamic SQLI Attacks

This section, present review of different existing

techniques scanners that are implementing both static

and dynamic approaches to vulnerability analysis.

Consequently this section classified existing techniques

and scanners into three categories; academic, open

source and commercial scanner as described in (Gartner,

June 19, 2014).

3.3.1. Academic SQLI firewall

Academic SQLI Attack represent those Attacks proposed

by individuals in a field of research such as SQLI web

firewall (SQL Injection web firewall)

EnhancedMySQLinjector, secuBat, wave, Amnisia etc.

Majority of proposed academic SQLI Attack are

language specific, their developments are ongoing

process and public access to these SQLIA is unavailable.

However, method used in development of such tools are

publicly available to shade light to individuals or

academic researchers who want to improve existing

tools or proposed new methods with enhanced features.

This section is also classified into two approaches.

Approach number one that is focusing on proposed

techniques SQLIA and approach number two focusing

on evaluation of existing techniques SQLI web firewall

(Djuric, 2013), (Masanès, 2006).

3.3.1.1. Proposed Techniques and firewall

Code miner was proposed in (Agosta et al., 2012) for

detection of SQL and XSS vulnerabilities in PHP web-

based applications. In this approach all PHP codes are

converted abstract syntax tree, through the use of a

parser. This enable firewall of easily extraction of the

control and data flow information needed for analysis

firewall start sink point detection in which source code

are scanned and checks for the presence of sensitive

functions. Their presence is ascertained through the

comparison with a language-dependent, extensible

knowledge base that is provided as input to the tool. So

all sink points are characterized by different vulnerability

patterns defined by programmer in firewall.

After detection of the sink points is completed firewalls

starts examining the abstract syntax tree provided by

the parser to perform Static taint Analysis and extract

information on the chain of modification which every

variable undergoes each vulnerable function

encountered scanner make it taint. The idea of using

abstract syntax tree is to construct valid semantic feature

that enables firewall o further extend our tool to analyze

code in other programming languages with minimum

effort. However static analysis has their inherit problem

for security tester because some cases most company

doesn’t want give source code of application for some

reasons.

In (Zhang and Wang, 2010) static code scanner was

proposed to detect XSS and SQI vulnerabilities. This

scanner tend to examine source code with the objective

of finding vulnerability by using morphological analysis

and semantic analysis in order to produce semantic tree

and control flow program. Examination of the control

flow program is conducted based on analysis rules

which would then report vulnerability of the exact input

program. The idea is to analyze the control flow

program and semantic tree based on spot broadcast

algorithm in order to detect the vulnerability of input

variables without data sanitation. Using static code

analyzer to

detect vulnerabilities required at least basic knowledge

of code analysis and this approach can only work on ASP

web applications.

Dynamic Web Application firewall (D-WAF) was

proposed in (Huang et al., 2004) to detects XSS and SQLI

vulnerabilities. This firewall consist similar component

used in (Liban and Hilles, 2014) SQLI web firewall,

attacking and analysis component. It takes seed URL as

its input, visits all Web Pages and stored the page with

injection parameter, it then later takes stored links and

forms and generates attack that would be lunch against

these links and forms. Experimental result show the

scanner faces challenges in identifying forms that

required partial refreshment and login authentication.

Beside this D- WAV also does not have functionality to

predict whether application is vulnerable if it’s not

responding to SQL query related errors if abnormal

request was received from client.

Static code firewall was proposed in (Livshits and Lam,

2005) that uses static code analysis to detect SQL

injection Attack and prevent attacker from exploiting

such vulnerability in java web-based application. In this

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 33

approach PQL was used as a syntactic model for queries

library, which allow users to define vulnerability patterns

in a familiar Java-like syntax. Any piece of code that

accepts input parameters from user and are passed to

the backend database are marked tainted and tracked

until it used in a sink. The advantage of this approach is

that it enables detection of all potential security

violations early, even without executing the application.

However this approach requires source code application

to carry out this function. In addition, it cannot detect

unknown patterns of SQL injection attack.

DIGLOSSIA is a tool that detects and prevents SQL

injection attack by computing shadow values for the

results of all string and character array operations that

depend on user input. In this approach programmer

defines valid queries in the form of a tree-like structure

to compare against dynamic queries entered by the user

(Bau et al., 2010). When input query is sent to database

the tool intercepts the query and tries to construct a tree

like a dynamic query based on queries already defined

by the programmer and also computes the shadow of

the entered query storing it in the shadow value table

indexed by the address of the memory location for the

original value, performing both grammar and shadow

checks using a dual parser. Using the dual parser to

detect injected code is based on the idea that query

strings can be parsed to either its original grammar, or

the shadow grammar. If the tool cannot produce tree-

like structure of query, the tool rejects the query and

reports a code injection attack. Otherwise, it compares

the query with its shadow to check whether the query is

syntactically isomorphic, and that the code in the

shadow query is not tainted. If either condition fails, it

considers the dynamic query as an attack. The problem

with this approach is that when users input non-

malicious queries that are supported by database

engine but violate the rule of query code in DIGLOSSIA

it will consider that query as an attack. This method is

totally based on the idea that when the web application

submits the query any input type by the user will

considered as an attack.

SQL UnitGen is a tool that uses static analysis to detect

and prevent SQL injection attack. It uses unit case that is

library that lists a number of attack patterns which helps

to detect existing SQL injections in a dynamic query

(Shin et al., 2006).

This method cannot detect new or existing attacks

whose pattern has not been addressed in the unit test

library.

AMNESIA tool that combine static and dynamic

approach to SQL vulnerability by building static queries

(predefine queries) and these queries are compare

against query enter by user at runtime. Thus, in this

approach all queries entered by user are being checks

to see if the query complies with model defined in the

static phase. If the query matched the model it allows

execution in the database engine, otherwise it is

blocked. The accuracy of AMNISIA depends on the

accuracy of the developed Queries model. The authors

show in the evaluation that their technique was capable

of addressing all attacks.

Intrusion Detection System (IDS) was proposed in

(Valeur et al., 2005) that utilizes multiple anomaly

detection models to detect attacks against back-end

SQL databases based on machine learning approach. In

this approach HTTP POST, and GET request are

intercepted and IDS selects what features of the query

should be modeled using training data set in training

phase. This starts when feature vectors are created by

extracting all tokens marked as constant and inserting

them into a list in the order in which they appear in the

query. After features were extracted then different

statistical models are used depending on what data type

model is selected. If a dynamic query does not match

the model, the query will consider it as an attack.

After evaluation IDS was found to be effective in

detecting all kinds of SQL injection attack with false

positive result.

In (Bandhakavi et al., 2007) CANDID was proposed to

detect and prevent SQL injection attack. In this approach

dynamic queries are mined at runtime and compared

with legitimate query statements. If the result is not the

same, it is a SQL injection attack. CANDID’s natural and

simple approach turns out to be very powerful for

detection of SQL injection attacks.

Technique that uses key-based randomization called

SQLIA and was proposed in (Boyd and Keromytis, 2004)

which enables programmers to develop queries using

instruction randomization without using SQL keywords.

In this approach when attacker modifies the dynamic

SQL query and sends to the database the proxy will

intercept it and compare it with queries that the

programmer created using instruction randomization

which enables SQLrand to detect malicious queries since

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 34

dynamic queries were not created using instruction

randomization. Experimental evaluation show the

effectiveness of this approach but this approach has a

number of drawbacks. However, the security of SQLIA

and defense on attacker capability to compromise the

key.

CSRS is the scanner that uses dynamic approach to

detect injection vulnerability which undergoes series of

activities to detect SQLI Attack.

Crawling, attacking and analysis. One of the important

features in CSRS crawler is that it was designed to keep

track of visited page and non-visited page, ability to

handle partial page refreshment and authentication

issues. Implementing state aware crawler is not an essay

tasks as it is backbone to detection of SQL injection

vulnerabilities (Singh and Roy, 2012). The scanner also

has database of attacks that can be use to lunch attack

against target applications. Due to the inability of

scanner to perform different response analysis CSRS is

only capable of detecting first order SQL injection

vulnerability.

Two similar approach Mysqlinjector and Enhanced

Mysqlinjector proposed by (Shakhatreh, 2010) and

(Liban and Hilles, 2014) respectively. Both scanners

composed of three components designed to detect SQL

injection vulnerability in PHP-based web application.

Enhanced Mysqlinjector is updated version of

Mysqlinjector designed to address problem of false

positive report by Mysqlinjector because Mysqlinjector

does not have ability trigger and analyzed SQLI

vulnerability that can be exploited using time-based

SQLI attacks.

Therefore author of Enhanced

Mysqlinjector update database of attack used by

Mysqlinjector with SQLI time based attack and also

dataset that enable scanner to deduced existing of such

vulnerability in target application.

WEBSSARI uses content management that was

developed using taint analysis. In this approach scanner

will start by inspecting the source code of application

line-by-line and apply taint to the point that are

potential to injection attacks (Huang et al., 2004).

According (Shin et al., 2006) Taint analysis is effective

and accurate way to check for vulnerability in

application. However, scanners implementing taint

analysis approach are language specific; that is to say

they are only capable of detecting vulnerability in one

type of language. WEBSSARI was tested on vulnerable

application and compared against other scanners using

accuracy metric and result of evaluation shows that

there is need to improve the effectiveness.

SEFELI uses static code analysis approach to determine

SQL injection vulnerability. SEFELI was backed with

knowledge library database defined by programmer

which helps in identifying un-sanitized input point (Fu et

al., 2007).

When it reaches any injection point, the threshold library

containing knowledge of defect function is consulted,

identify vulnerable injection point based on constraint is

constructed by programmer. SEFELI show a good result

when author tested it on ASP-based application but fails

to detect vulnerabilities on other languages. Using static

code analysis tools has inherit limitation on identifying

vulnerabilities of other language other than language

that scanner developed to test against.

SQL Injection Vulnerability Scanner (SQLIVS) was

proposed (Djuric,2013)to simulate different type of SQLI

attacks type in attack component which enable the

scanner to use this attack to lunch attacks against target

applications using injection parameters. The author

modified plagiarism application developed by (Cook

and Rai, 2005) to analyze the content of the page in

order to predict whether application is vulnerable to SQL

injection vulnerability. Once page or forms is attacked

the application has parser that takes the whole HTML

page content to enable application performs analysis

very easily As result of lack of number of attacks pattern

required to trigger vulnerabilities the scanner failed to

detect most of the second order SQL injection

vulnerability in tested applications.

Black Box Testing Scanner (BBTS) was developed in

(Chen and Wu, 2010) to find SQL injection vulnerabilities

using dynamic approach. The BBST uses state aware

crawler to identify forms and links with injection

parameters to In this approach the authors’ uses state

aware scanner that will able to recognized webpage that

contain injection parameter. This improvement enable

scanner to save time by not downloading pages that

does not contain injection parameter and also avoid

false positive that result in from attacking pages that

does not have injection parameter.

Author experimental evaluation show the scanner

achieved 100% accuracy on tested application in short

period of time. However author did not evaluate his

approach with available existing technique to evaluate

both accuracy and efficiency of the proposed scanner.

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 35

Viper is black box firewall proposed in (Ciampa et al.,

2010) that detects SQLI vulnerability through dynamic

testing. Scanners that implement dynamic approach are

required to have different number of attacks type as well

as way of analysing server response. Viper uses different

number of predefined attack pattern to trigger hidden

vulnerability in application but it is capable of

performing single analysis on server response to attacks.

Experiment shows that Viper was able to carry successful

attacks that trigger blind SQL injection vulnerability but

Viper was not able to report it, this is because analysis

was not address to analyzed blind SQL injection

vulnerability.

Static firewal was proposed in (Shar and Tan, 2012) that

detect vulnerable point by characterizing input function

into pattern of code attributes. Static code attributes are

collected from backward static program slices of

sensitive program points, so that to mine both input

sanitization code patterns and input validation code

patterns, from such static code attributes. This firewal

uses vulnerabilities prediction model to enable scanner

to predict vulnerable code for SQLI and cross site

scripting (XSS) vulnerabilities. Authors evaluated their

scanner with different PHP web-based application

source code, which shows the effectiveness of their

approach. However their approach can only be effective

in PHP web-based applications.

4SQLi attacks that combine both static and dynamic

approach to detect SQLI vulnerabilities (Appelt et al.,

2014). 4SQLi uses a single or multiple mutation

operators of different types that can be used as a single

input parameter to generate desired inputs which will

use latter for detecting subtle vulnerabilities that can

only be triggered with an input generated by combining

multiple mutation operators. For example, consider an

application that alters inputs by searching for known

attack patterns that can be generated using one of the

behaviour-changing operators. To form a successful

attack, it is necessary to apply a behaviour-changing

operator and then apply one or more obfuscation

operators.

 SecuBat as proposed in (Kals et al., 2006) to detect XSS

and SQLI vulnerabilities. SecuBat implement four stage

of operation in trying to detect and report

vulnerabilities. SecuBat begin by crawling all pages in a

given seed URL, injection malicious request to injection

point so that to make database server to respond with

default configuration error messages. SecuBatdetect

vulnerabilities by analyzing the error messages return by

database server. SecuBat have similar limitation as other

scanner by relaying on return error messages to detect

vulnerabilities. Madhane proposed R-WASP

tool to detect and prevent SQL injection attack.It

intercepted dynamic queries entered by the user and

breaks them into tokens of SQL keywords, operators and

characters in order to track existing malicious input in

the query (Madhene 2013). If all input tokens are found

to be trusted then the query is considered to be safe and

allowed processing by database engine. Otherwise

action is performed as defined by the programmer.

Using SQL keywords, operators, and characters to find

the malicious input in a dynamic query is problematic in

nature, as it is possible to have a valid query with delete

or drop keywords.

Two similar techniques was proposed SQL DOM and

Safe Query Objects in (McClure and Kruger, 2005) and

in (Cook and Rai, 2005) respectively. In these approaches

queries to the database are decoded so as to prevent

attacker from gaining unauthorized access to the

database. Changing the procedure of queries building is

one of the efficient ways to prevent injection attack.

However, approach is problematic in nature as always it

produced false positive and encoding key can be

compromised if not properly handle.

Scott and colleague proposed Security Gateway to

detect and prevent SQLIA. Security gateway was

designed to implement queries policy in which each

query is annotated with message authentication code

(MAC) (Scott and Sharp, 2002).Security Gateway act as a

web firewall, it monitor HTTP request and response. A

query is said to be malicious if the requested query does

not match static query produce by MAC at runtime

request. This method is very effective in identifying

modified dynamic queries, however this approach is

problematic in nature as it requires programmer to

know each and every query in application and when

every new query is added it requires programmer to

update queries log.

Liu and colleagues proposed SQLProb that uses static

and dynamic approach to detect and prevent SQLIA. In

static phase query a collector was used to generate

parse tree structure of legitimate queries from query

repository as defined by the programmer which will be

used to compare semantic structure of dynamic query

(Liu et al., 2009). However, in dynamic phase when user

inputs queries, the queries are compared against

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 36

semantic tree structure of legitimate queries created in

phase and if the structure of dynamic query matches

with the structure in a generated tree like structure

query, queries are allowed; otherwise they are prevented

and consider as malicious. This technique employs a

similar approach used by (Shin et al. 2006)

and the accuracy of this approach depends on how

accurate was the parser tree model that was developed.

Literature (Buehrer et al., 2005) proposed SQLGuard and

in this approach input queries dynamically generate,

through concatenation, a string representing an SQL

statement and incorporating user input which generates

and returns a new key by the database. SQLGuard

validates dynamic queries by building two parse tree

structures of dynamic query. First tree structure has

unpopulated user tokens for dynamic query the second

tree is the result of parsing the string with these nodes

filled in with user input. The two trees are then

compared for matching structure. If the structure

marched, the query is allowed for execution; otherwise

it is blocked.

This approach tends to be slow as data comparison

takes much time to process in tree structure model as

each node must be processed. The accuracy of this

approach depends on whether or not the attacker

discovered the key.

Literature (Cheon et al., 2013) proposed machine

learning method using Bayesian algorithm to detect and

prevent SQL injection attack. In this approach monitor

capture dynamic SQL query HTTP POST and GET, send it

to converter which breaks SQL statement into a number

of keywords based on black space in statement and

calculate the length of dynamic SQL query. It also

calculates the number of keywords present in such a

query and sends a numeric value of length and keyword

of dynamic query to the classifier. The classifier then

calculates the probability of SQL injection in dynamic

query based on results received from the converter, and

then compares the probability of SQL injection

calculated with one defined by user threshold as training

dataset which consists of the probability of legitimate

query and probability of malicious query.

When the probability of dynamic SQL query calculated

by classifier matches the probability of legitimate query

in training dataset the query is allowed; otherwise it is

blocked. One important thing in this method is that it

simulates a high number of attack patterns in training

data including blind SQL injection attack which is very

difficult to address. However this method requires

programmers to fully define and carefully train data set

because the accuracy of this approach depends on how

accurate was the trained data.

Literature (Joshi and Geetha, 2014) proposed method

that uses machine learning to detect and prevent SQL

injection attack. In this method training dataset was

constructed by analyzing source code program of the

application and calculating the entropy of static SQL

query. The main purpose of entropy is to count the

average amount of information needed to identify the

class model of a training dataset. In this case entropy of

all static queries that are implemented in a website was

calculated which was used to construct training dataset

which will be used later for comparison. When a user

issues SQL query the entropy of dynamic SQL query is

calculated and compared with entropy in training data.

If a match is found the query is allowed to execute in

database engine; otherwise it is blocked and prevented

from parsing to the database engine. Using entropy in

machine learning to classify queries has advantages over

using probability as used because it produced better

results. When data are categorized instead of using

continuous-valued, small changes in SQL query will yield

a great effect when the entropy of that query is

calculated. The disadvantage of this method is that it

requires analysis of the application of the source code.

In (Shahriar and Zulkernine, 2012) similar method used

in (Cheon et al 2013) was proposed to detect and

prevent SQL injection attack. In this approach black

space method was used in breaking SQL stamen into

keywords but here length of the query was not

considered. After tokenizing SQL statement user action

was then considered in generating training dataset in

which system user was categorized into three namely

visiting user, normal user and admin and a different role

was assigned to each.

 This user classification helps classifier to determine

which model to use in training data to compute and

compare probability of SQL injection in user query. For

example in normal user query keywords considered as

malicious are dropped so when visiting users issue SQL

statements with drop keywords this query will be

automatically considered as malicious before

computing probability which allows the method to use

two probabilities in computing user queries. The first is

prior probability which assumes the query is malicious if

it contains some malicious keywords and posterior

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 37

probability which can be obtained after comparing

calculated probability of dynamic query against its

model in training. Advantage of using prior probability

and posterior probability is that they help to reduce false

positive result.

However the issue of stacked query was not addressed

in this method which allowed attackers to perform piggy

backend query attack.

Kumar in (Kumar, 2013) proposed a technique to detect

and prevent crosssite scripting (XSS) and SQL injection

attack. In this approach programmer created files which

contain attack patterns of both XSS and SQL injection

attack. HTTP request to database will be intercepted and

compared to dynamic query with set of attack patterns

in programmer define threshold. If the query is found to

contain attack patterns defined by the programmer the

query will be blocked and a report is generated. This

technique was found to be effective after evaluation;

however it cannot guarantee protection for attack

patterns that were not included in the programmer

predefined threshold.

Symbolic code execution was proposed by Huang and

colleagues in (Huang et al., 2013) that used symbolic

code execution to detect SQLIA and XSS vulnerabilities

in a web application. Symbolic code execution refers to

the randomly generating malicious queries and trying to

simultaneously inject such queries into symbolic socket

(HTTP POST, GET, cookies and forms). The purpose is to

ensure that malicious request is reaching directly inside

database engine without any sanitization; by doing this

the database engine may perhaps respond with return

error messages which indicate that the application is

exploitable by SQL injection attack.

However the approach does not address the problem of

inference attacks where application is vulnerable but

configure not return to default configuration error

messages.

Qu and colleagues proposed Java-based technique in

(Qu et al., 2013) for detection of SQL injection

vulnerability in Java-based web application. In this

approach java codes are transformed into it

intermediate representation by lexical and grammar

analysis, this enable to collect sensitive point by

matching the sensitive application entry point call while

traversing the intermediate representation. Then

perform taint dependency analysis for each fragile

sensitive point based on the constructed data

dependency graph and function call. Then, it generate

the taint dependency graph from the fragile sensitive

point to the pollution source and vulnerability is

detected by measuring intersection between the value

of fragile sensitive point and the attack mode. This

method is language specific and accuracy of this

approach depend logic design of language recognition,

code conversion attack knowledge base that are used in

vulnerability detection.

A techniques that combine both static and dynamic

approach to detect SQL injection vulnerability called

WAVES was proposed in (Huang et al., 2005) to

overcome problem of damage or changing state of web

application by penetration testing scanners. WAVES is

capable of detecting entry points that are vulnerable to

injection and XSS attacks without modifying or course

any damage to web applications. However, experimental

evaluation show that WAVES failed to detect all

vulnerabilities detected by static code analyzer.

According to the author the failure was result of limited

functionalities of WAVES to observe HTML output.

3.3.1.2. Evaluation of Proposed Techniques and

firewall

According to Antunes in (Antunes and Vieira, 2010)

there is no systematic approach to evaluate vulnerability

scanners this is because one scanner can be accurate in

one language and failed to achieved any detection in

other programming language. Thus, they proposed

costume approach compare the effectiveness of static

against dynamic vulnerability assessment tools based on

coverage number of known vulnerabilities in target

applications. The approach adopted in this study is

known as F-measure proposed by (Van Rijsbergen

1979), which largely independent of the way

vulnerabilities are counted. In fact, it represents the

attribute mean of two very popular measures” that is

precision and recall.

Experimental evaluation shows the average F measure

produced by static scanner is 80% of the total

vulnerabilities while dynamic scanner produced average

of 36%. This evaluation shows there is much gap

between the two different approaches, there is need to

improve the effectiveness of these scanners of different

approaches.

Experimental method was proposed in (Khoury et al.,

2011) to challenge the capability of three different

scanners. The purpose is to ensure whether these

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 38

scanners are able to perform automatic testing in

effective way. The test bed applications (PCI,

WackoPicko and MatchIt) used has the following

feature;. PCI with three (3) stored SQL injection with two

(2) login requirements, WackoPicko with one (1) stored

SQLI one login requirement and MatchIt with one stored

SQLI with no login required. Wireshark ware used to

monitor activities between scanner and testing

application. Experiment shows that all of the scanner

successfully create username but failed to login using

SQLIA. By analysing the captured traffic it was found that

all of the scanner ware able to trigger default error

configuration message from the server but failed to

recognize that as vulnerability because that return error

message from database server was not addressed in the

predefined error messages library.

In (Antunes and Vieira, 2009a) method is proposed to

test and evaluate effectiveness four popular commercial

scanners from different vendors. Authors claim that

most of the vendor/individual adjust the effectiveness of

their product based on specific custom application that

which cannot predict effectiveness of these scanners

when other applications. Thus, authors tested four

scanners (Acunetix, AppScan, WebInspect and updated

version of one of the mentioned scanner) on 300 public

website. When these scanners was evaluated using

accuracy metric, the result shows that best scanner

detect 40% out of total vulnerabilities with 18% of false

positive. Worse among the scanners provide the

coverage of 25% with 7% of false

positive.

Similar approach was proposed in (Antunes and Vieira,

2009b) but in this approach authors choose to

developed custom application with number of

vulnerability which enable to evaluate effectiveness of

static against dynamic scanners. Authors choose eight

(8) popular scanners four implementing static approach

and four implementing dynamic approach. Each scanner

was tested on same 8 websites four public and four

private with total number of sixty one (61) known

vulnerabilities. Result of evaluation shows that best

among dynamic scanner achieved coverage of 50.8% of

total vulnerabilities with 14% false positive. The worse

among dynamic scanner achieved coverage of 9.8% out

of total vulnerability with no false positive In case of

static scanners the best scanner achieved 100%

coverage of all vulnerabilities with 23.6% false negative

and worse among static scanners achieved coverage of

39.3% of total vulnerability with 26.6% false positive.

Despite the fact that this evaluation cannot be

generalized to compare the effectiveness of scanner

with different implementation, however it shows

significant difference different scanner implementing

same approach reporting different vulnerabilities on

same tested applications. Hence, there is need to

improve the coverage detection of dynamic and static

scanner as well as reduce the number of false positive in

both side.

3.3.2. Commercial and open source of web

application firewall

Unlike academic vulnerabilities scanners, open source

tools such as Vega, Zap, Wa3p, Wapit and Nikitoetc are

available for public use inform of source code

application under copyright for free of charge. However,

architecture, algorithm or development approach is not

available to public. Individuals or researchers are

permitted to study and improve open source tool with

consent of the owner. Beside, Open source and

academic Web vulnerability scanner, there are also

commercial tools such as AppScan, Acunetix, Bugblast,

Netsparker etc. These tools are totally different from

academic and open source tools in the sense that users

can only utilize the full functionalities of these tools by

purchase, also architecture, algorithms or method used

by development of these tools are not available to

public and no vendor allows improvements of their tool

(Djuric, 2013), (Acunetix, 2013), (OWSAP, 2013)

The advantage of commercial tool over other tools is

that; they provide user with extensive help and

functionalities that are not available in academic and

commercial tools (OWSAP, 2013).

Acunetix Web Vulnerability assessment tool that is

equipped with much functionality. Acunetix is capable of

detecting much vulnerability in web application.

Acunetix uses technology called AcuSensor which

allowed Acunetix to run in different mode and this

technology are expected to enable fast vulnerabilities

assessment and maintain law false positive. However,

study shows that acunetix take 3hr to scanned page with

100 web pages. Acunetix company provide free software

with is capable of detecting only XSS vulnerability and

licensed software injection, file execution, session

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 39

management, and manual buffer overflow attacks

(Acunetix, 2013).

Grendel-Scan is free scanner that is capable of detecting

web applications vulnerabilities such as SQL injection,

XSS and session management, but do not detect

complicated vulnerabilities such design and logic

defects (Grendel).

HP’s WebInspect is the one of the most popular web

application vulnerabilities assessment tool. HP claim

WebInspect is capable of detecting vulnerabilities in a

complex application that cannot be detected by

traditional scanners. It uses technology that enable

parallel crawling, multiple payload injections.

WebInspect is capable of detecting session

management, broken SQL injection and XSS

vulnerabilities. Many literature review in this thesis

evaluate the effectiveness of WebInspect (Inspect, 2012).

Falcove is web vulnerabilities assessment tool that is

available for sell in Buy Server limited. Ltd Falcove is

capable of identifying web vulnerabilities as well as

exploiting them, it uses intelligent crawler that is capable

of recognizing form with password fields, shopping

cards and present report indicating the security state of

tested application. The trial version of this software can

detect detects SQL injection, XSS, and file execution

attacks (Falcove, 2007).

N-Stalke is vulnerability scanning tool that provide over

39,000 infrastructure and signature check. User can set

the custom assessment policies depending on the need

of user requirements. N-Stalker provide 7 day trial

version which enable user to check for SQL injection, XSS

attacks, buffer overflows, and session management

attacks (N-Stalker, 27 Feb. 2014,).

Rational AppScan is licensed software tool that powered

by IBM, it provide unlimited edition to the user.

However, AppScan can only perform security

assessment on the application provided by IBM

Company. It is capable of detecting SQL injection, XSS

attacks, buffer overflows, and other popular web

application vulnerabilities. AppScan have been

evaluated by many literature review in this thesis (IBM,

2013).

3.4. Research Findings

This research has used analytical approach to evaluate

current methods and approaches used by web

applications as firewall to detect and prevent SQL

injection attacks. We did not perform any experiments,

it is based on our experience and therefore our findings

is as follows:

Our study reveals that blacklist approach in developing

a web firewall has been traditionally deployed as a key

element typically in the form of a malicious database of

known digital signatures, heuristics or behavior

characteristics associated with SQL injection attacks that

have been identified in the wild.

Since blacklist relay on only known SQL injection attacks

signatures and experienced SQL injection attack

vectors, exploits, vulnerabilities, and for which counter-

measures are already known or developed. Therefore it

is limited against unwanted attacks unknown menaces

like zero-day threats (which have yet to be discovered

and isolated by security professionals), blacklisting is of

very limited.

However the advantage of blacklist it’s traditionally

been a low-maintenance option, as responsibility for

compiling and updating a blacklist of applications or

entities falls to the software itself and its related

databases, or to some form of third-party threat

intelligence/service provider.

On other hand whitelisting turns the blacklist logic on its

head: You draw up a list of acceptable entities (software

applications, email addresses, users, processes, devices,

etc.) that are allowed access to a system or network, and

block everything else. It’s based on a “zero trust”

principle which essentially denies all, and allows only

what’s necessary.

The simplest whitelisting techniques used for systems

and networks identify applications based on their file

name, size, and directory paths. But the U.S. National

Institute of Standards and Technology or NIST, a division

of the Commerce Department, recommends a stricter

approach, with a combination of cryptographic hash

techniques and digital signatures linked to the

manufacturer or developer of each component or piece

of software.

At the network level, compiling a whitelist begins by

constructing a detailed view of all the tasks that users

need to perform, and the applications or processes they

need, to perform them. The whitelist might include

network infrastructure, sites and locations, all valid

applications, authorized users, trusted partners,

contractors, services, and ports. Finer-grained details

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 40

may drill down to the level of application dependencies

and software libraries (DLLs, etc.), plugins, extensions,

and configuration files.

Whitelisting for user-level applications could include

email (filtering for spam and unapproved contacts),

programs and files, and approved commercial or non-

commercial organizations registered with Internet

Service Providers (ISPs).

In all cases, whitelists must be kept up to date, and

administrators must give consideration both to user

activity (e.g., what applications they’re allowed to install

or run) and user privileges (i.e., making sure that users

aren’t granted inappropriate combinations of access

rights).

Third-party whitelisting services exist and are sometimes

employed by enterprises seeking to ease the

management burden that’s associated with the process.

These services are often reputation-based, using

technology to give ratings to software and network

processes based on their age, digital signatures, and rate

of occurrence.

4. CONCLUSION

This study presented background of web application

threat and firewall, explored different methods and

approaches for detection and prevention of SQL

injection attacks as web firewall. Our study identifies half

of the study uses blacklist approach while there no much

studies proposing whiletlisting approach with only three

studies proposed combination of the two approaches.

Furthermore the study reveals that fact that, blacklists

are restricted to known variables (documented malware,

etc.), and that attacks variants are continually being

designed to evade behavior or signature-based modes

of detection, there’s a feeling in many circles that

whitelisting represents the more sensible approach to

information security.

This is despite the time, effort, and resources which must

be spent in compiling, monitoring, and updating

whitelists at enterprise level – and the need to guard

against efforts by cybercriminals to compromise existing

whitelisted applications (which would still have the go-

ahead to run) or to design applications or network

entities that have identical file names and sizes to

approved ones.

As always such debate, there are also those who favor a

best of both worlds scenario, with a blacklisted approach

to security software for malware and intrusion detection

and eradication, operating in tandem with a whitelisted

policy governing access to the system or network as a

whole.

REFERENCES

[1] Acunetix. (2013). Accunetix Vulnerability

Scanner. Retrieved 29/06/2015, from

https://www.acunetix.com/vulnerability-

scanner/

[2] Agosta, Giovanni, Barenghi, Alessandro, Parata,

Antonio, & Pelosi, Gerardo. (2012). Automated

security analysis of dynamic web applications

through symbolic code execution. Paper

presented at the Information Technology: New

Generations (ITNG), 2012 Ninth International

Conference on.

[3] Aliero, M. S., Ghani, I., Zainudden, S., Khan, M.

M. & Bello, M. 2015. review on sql injection

protection methods and tools. Jurnal Teknologi,

77.

[4] Aliero MS, Ardo AA, Ghani I, Atiku M.

“Classification of Sql Injection Detection And

Prevention Measure”. IOSR Journal of

Engineering (IOSRJEN), ISSN (e). 2016:2250-

3021

[5] Aliero MS, Ghani I. “A component based SQL

injection vulnerability detection tool”.

InSoftware Engineering Conference (MySEC),

2015 9th Malaysian 2015 Dec 16 (pp. 224-

229). IEEE.

[6] Antunes, Nuno, & Vieira, Marco. (2009a).

Comparing the effectiveness of penetration

testing and static code analysis on the detection

of sql injection vulnerabilities in web services.

Paper presented at the Dependable Computing,

2009. PRDC'09. 15th IEEE Pacific Rim

International Symposium on.

[7] Antunes, Nuno, & Vieira, Marco. (2009b).

Detecting SQL injection vulnerabilities in web

services. Paper presented at the Dependable

Computing, 2009. LADC'09. Fourth Latin-

American Symposium on.

[8] Antunes, Nuno, & Vieira, Marco. (2010).

Benchmarking vulnerability detection tools for

web services. Paper presented at the Web

Services (ICWS), 2010 IEEE International

Conference on.

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 41

[9] Antunes, Nuno, & Vieira, Marco. (2011).

Enhancing penetration testing with attack

signatures and interface monitoring for the

detection of injection vulnerabilities in web

services. Paper presented at the Services

Computing (SCC), 2011 IEEE International

Conference on.

[10] Antunes, Nuno, & Vieira, Marco. (2012).

Evaluating and improving penetration testing in

web services. Paper presented at the Software

Reliability Engineering (ISSRE), 2012 IEEE 23rd

International Symposium on.

[11] Antunes, Nuno, & Vieira, Marco. (2015).

Assessing and Comparing Vulnerability

Detection Tools for Web Services:

Benchmarking Approach and Examples.

Services Computing, IEEE Transactions on, 8(2),

269-283.

[12] Appelt, Dennis, Nguyen, Cu Duy, Briand, Lionel

C, & Alshahwan, Nadia. (2014). Automated

testing for SQL injection vulnerabilities: an input

mutation approach. Paper presented at the

Proceedings of the 2014 International

Symposium on Software Testing and Analysis.

[13] Bandhakavi, Sruthi, Bisht, Prithvi, Madhusudan,

P, & Venkatakrishnan, VN. (2007). CANDID:

preventing sql injection attacks using dynamic

candidate evaluations. Paper presented at the

Proceedings of the 14th ACM conference on

Computer and communications security.

[14] Bau, Jason, Bursztein, Elie, Gupta, Divij, &

Mitchell, John. (2010). State of the art:

Automated black-box web application

vulnerability testing. Paper presented at the

Security and Privacy (SP), 2010 IEEE Symposium

on.

[15] Boyd, Stephen W, & Keromytis, Angelos D.

(2004). SQLrand: Preventing SQL injection

attacks. Paper presented at the Applied

Cryptography and Network Security.

[16] Buehrer, Gregory, Weide, Bruce W, & Sivilotti,

Paolo AG. (2005). Using parse tree validation to

prevent SQL injection attacks. Paper presented

at the Proceedings of the 5th international

workshop on Software engineering and

middleware.

[17] Cenzic’s. (2014). Application Vulnerability

Trends Report: 2014. Retrieved 29/09/2015,

from https://www.info-point-

security.com/sites/default/files/cenzic-

vulnerability-report-2014.pdf

[18] Chen, Jan-Min, & Wu, Chia-Lun. (2010). An

automated vulnerability scanner for injection

attack based on injection point. Paper

presented at the Computer Symposium (ICS),

2010 International.

[19] Cheon, Eun Hong, Huang, Zhongyue, & Lee,

Yon Sik. (2013). Preventing SQL Injection Attack

Based on Machine Learning. International

Journal of Advancements in Computing

Technology, 5(9).

[20] Cho, Ying-Chiang, & Pan, Jen-Yi. (2015). Design

and Implementation of Website Information

Disclosure Assessment System. PloS one, 10(3),

e0117180.

[21] Ciampa, Angelo, Visaggio, Corrado Aaron, & Di

Penta, Massimiliano. (2010). A heuristic-based

approach for detecting SQL-injection

vulnerabilities in Web applications. Paper

presented at the Proceedings of the 2010 ICSE

Workshop on Software Engineering for Secure

Systems.

[22] Cook, William R, & Rai, Siddhartha. (2005). Safe

query objects: statically typed objects as

remotely executable queries. Paper presented

at the Software Engineering, 2005. ICSE 2005.

Proceedings. 27th International Conference on.

[23] Djuric, Zoran. (2013). A black-box testing tool

for detecting SQL injection vulnerabilities. Paper

presented at the Informatics and Applications

(ICIA), 2013 Second International Conference

on.

[24] Falcove. (2007). Falcove Web Vulnerability

Scanner and Penetration Testing. Retrieved

29/06/2015, from

http://www.ramsayfalcove.com/htdocs/Welco

me.html

[25] Fu, Xiang, Lu, Xin, Peltsverger, Boris, Chen,

Shijun, Qian, Kai, & Tao, Lixin. (2007). A static

analysis framework for detecting SQL injection

vulnerabilities. Paper presented at the

Computer Software and Applications

Conference, 2007. COMPSAC 2007. 31st Annual

International.

[26] Gartner. (June 19, 2014). WEB APPLICATION

ATTACK REPORT #5. Retrieved 29/06/2015,

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 42

from

http://www.imperva.com/docs/hii_web_applica

tion_attack_report_ed5.pdf

[27] Grendel.). Grendel-Del Web vulnerability

Scanner. Retrieved 29/06/2015, from

http://sectools.org/tool/grendel-scan/

[28] Halfond, William GJ, & Orso, Alessandro. (2007).

Detection and prevention of sql injection

attacks Malware Detection (pp. 85-109):

Springer.

[29] Huang, Shih-Kun, Lu, Han-Lin, Leong, Wai-

Meng, & Liu, Huan. (2013). Craxweb: Automatic

web application testing and attack generation.

Paper presented at the Software Security and

Reliability (SERE), 2013 IEEE 7th International

Conference on.

[30] Huang, Yao-Wen, Tsai, Chung-Hung, Lin,

Tsung-Po, Huang, Shih-Kun, Lee, DT, & Kuo, Sy-

Yen. (2005). A testing framework for Web

application security assessment. Computer

Networks, 48(5), 739-761.

[31] Huang, Yao-Wen, Yu, Fang, Hang, Christian,

Tsai, Chung-Hung, Lee, Der-Tsai, & Kuo, Sy-Yen.

(2004). Securing web application code by static

analysis and runtime protection. Paper

presented at the Proceedings of the 13th

international conference on World Wide Web.

[32] IBM. (2013). IBM Web Application Scanner.

Retrieved 29/06/2015, from http://www-

03.ibm.com/software/products/en/appscan

[33] Inspect, HP. (2012). HP Inspect Vulnerability.

Retrieved 29/06/2015, from

http://sectools.org/tool/webinspect/

[34] Jnena, Rami MF. (2013). Modern Approach for

WEB Applications Vulnerability Analysis. The

Islamic University of Gaza.

[35] Joshi, Anamika, & Geetha, V. (2014). SQL

Injection detection using machine learning.

Paper presented at the Control,

Instrumentation, Communication and

Computational Technologies (ICCICCT), 2014

International Conference on.

[36] Kals, Stefan, Kirda, Engin, Kruegel, Christopher,

& Jovanovic, Nenad. (2006). Secubat: a web

vulnerability scanner. Paper presented at the

Proceedings of the 15th international

conference on World Wide Web.

[37] Khoury, Nidal, Zavarsky, Pavol, Lindskog, Dale,

& Ruhl, Ron. (2011). An analysis of black-box

web application security scanners against

stored SQL injection. Paper presented at the

Privacy, Security, Risk and Trust (PASSAT) and

2011 IEEE Third Inernational Conference on

Social Computing (SocialCom), 2011 IEEE Third

International Conference on.

[38] Kumar, Praveen. (2013). The multi-tier

architecture for developing secure website with

detection and prevention of sql-injection

attacks. International Journal of Computer

Applications, 62(9), 30-35.

[39] Lawal, MA, Sultan, Abu Bakar Md, & Shakiru,

Ayanloye O. (2016). Systematic Literature

Review on SQL Injection Attack. International

Journal of Soft Computing, 11(1), 26-35.

[40] Liban, Abdilahi, & Hilles, Shadi. (2014).

Enhancing Mysql Injector vulnerability checker

tool (Mysql Injector) using inference binary

search algorithm for blind timing-based attack.

Paper presented at the Control and System

Graduate Research Colloquium (ICSGRC), 2014

IEEE 5th.

[41] Liu, Anyi, Yuan, Yi, Wijesekera, Duminda, &

Stavrou, Angelos. (2009). SQLProb: a proxy-

based architecture towards preventing SQL

injection attacks. Paper presented at the

Proceedings of the 2009 ACM symposium on

Applied Computing.

[42] Livshits, V Benjamin, & Lam, Monica S. (2005).

Finding Security Vulnerabilities in Java

Applications with Static Analysis. Paper

presented at the Usenix Security.

[43] McClure, Russell A, & Kruger, Ingolf H. (2005).

SQL DOM: compile time checking of dynamic

SQL statements. Paper presented at the

Software Engineering, 2005. ICSE 2005.

Proceedings. 27th International Conference on.

[44] Medhane, Munqath H Alattar SP. R-WASP: Real

Time-Web Application SQL Injection Detector

and Preventer.

[45] N-Stalker. (27 Feb. 2014,). N-Stalker Web

Vulerability Scanner. Retrieved 29/06/2015,

from

http://www.windowsecurity.com/software/Web

-Application-Security/N-Stalker-Web-

Application-Security-Scanner.html

© IJCIRAS | ISSN (O) - 2581-5334

September 2020 | Vol. 3 Issue. 4

IJCIRAS1243 WWW.IJCIRAS.COM 43

[46] Nguyen-Tuong, Anh, Guarnieri, Salvatore,

Greene, Doug, Shirley, Jeff, & Evans, David.

(2005). Automatically hardening web

applications using precise tainting: Springer.

[47] OWSAP. (2013). Top 10 Vulnerability 2013 by

Open Web Security Project. Retrieved

29/06/2015, from

https://www.owasp.org/index.php/Top_10_201

3-Top_10

[48] Qu, Binbin, Liang, Beihai, Jiang, Sheng, &

Chutian, Ye. (2013). Design of automatic

vulnerability detection system for Web

application program. Paper presented at the

Software Engineering and Service Science

(ICSESS), 2013 4th IEEE International Conference

on.

[49] Scott, David, & Sharp, Richard. (2002).

Abstracting application-level web security.

Paper presented at the Proceedings of the 11th

international conference on World Wide Web.

[50] Shahriar, Hossain, & Zulkernine, Mohammad.

(2012). Information-theoretic detection of sql

injection attacks. Paper presented at the High-

Assurance Systems Engineering (HASE), 2012

IEEE 14th International Symposium on.

[51] Shar, Lwin Khin, & Tan, Hee Beng Kuan. (2012).

Predicting common web application

vulnerabilities from input validation and

sanitization code patterns. Paper presented at

the Automated Software Engineering (ASE),

2012 Proceedings of the 27th IEEE/ACM

International Conference on.

[52] Shin, Yonghee, Williams, Laurie, & Xie, Tao.

(2006). Sqlunitgen: Sql injection testing using

static and dynamic analysis. Paper presented at

the 17th IEEE International Conference on

Software Reliability Engineering, ISSRE.

[53] Singh, Avinash Kumar, & Roy, Sangita. (2012). A

network based vulnerability scanner for

detecting SQLI attacks in web applications.

Paper presented at the Recent Advances in

Information Technology (RAIT), 2012 1st

International Conference on.

[54] Thiyagarajan, A, Uma, S, Vipin, Ambat, & Dheen,

Najeem. (2015). METHODS FOR DETECTION

AND PREVENTION OF SQL ATTACKS IN

ANALYSIS OF WEB FIELD DATA.

[55] Tiwari, Yash, & Tiwari, Mallika. (2015). A Study of

SQL of Injections Techniques and their

Prevention Methods. International Journal of

Computer Applications, 114(17).

[56] Valeur, Fredrik, Mutz, Darren, & Vigna, Giovanni.

(2005). A learning-based approach to the

detection of SQL attacks Detection of Intrusions

and Malware, and Vulnerability Assessment (pp.

123-140): Springer.

[57] Zhang, Xin-hua, & Wang, Zhi-jian. (2010).

Notice of Retraction A Static Analysis Tool for

Detecting Web Application Injection

Vulnerabilities for ASP Program. Paper

presented at the e-Business and Information

System Security (EBISS), 2010 2nd International

Conference on.

