
© IJCIRAS | ISSN (O) - 2581-5334

August 2019 | Vol. 2 Issue. 3

IJCIRAS1317 WWW.IJCIRAS.COM 39

ANALYSIS AND OPTIMIZATION OF DISTRIBUTED FILE

SYSTEM PERFORMANCE

Sai Sie thu Kyaw1
, Daw Moh Moh Khaing2

Information technology, Technological University, Taunggyi, Myanmar

Abstract

Today, file sharing is widely distributed across

networks, administrators face growing problems as

they try to keep users connected to the data they

need. This paper proposes to implement Distributed

File System DFS using network file system, serve as

an NFS server it applies services for NFS which is one

of the components of File Server in Windows Server

2008, and perform as an NFS client it employs

services for NFS of window features in Windows

Vista Ultimate. In addition, the communication

between server and client uses ad hoc network to

share and mount NFS resources. The performance of

the NFS is analyzed by enforcing IOzone file system

and it is optimized by tweaking transfer block size of

mount command options. Finally, the resulted

output is automatically generated with chart as an

excel file.

Keyword: Ad hoc Network, Distributed File System

(DFS), Network File System (NFS), Services for NFS

1.INTRODUCTION

In computing, a distributed file system is a file system

that allows access to files from multiple hosts sharing via

a computer network. The data can access and process it

was stored on the local client machine. Distributed file

system makes it possible for multiple users on multiple

machines to share files and storage resources. The DFS

makes to share information and files among users on a

network in a controlled and authorized way [1].The

proposed paper uses NFS protocol to share files over

the network and to control the access lists on them.

2.AIM AND OBJECTIVES

The aim and objectives of this paper are described as

follow:

• To analyze system performance in DFS

• To optimize system performance in DFS

• To understand the nature of DFS

• To understand the concept of NFS

To study benchmark tools

3.BACKGROUND THEORY

According to the way the file storage is managed, there

are two distributed file system concepts:

In server client model a set of machines, known as

servers a computer or device that manages the network

resources provide storage for all of the files in the

distributed file system. All other machines, known as

clients PCs on which users run applications, must direct

their file references to these machines. Servers often run

on dedicated machines enabling clients to be more

general and often simpler to install and support.

In peer to peer model each machine provides storage

on its own attached disk, and allows others to access it

remotely. A participating machine may act as both a

client and a server [2].The NFS is included in the first

concept and it is described in next session.

4.NETWORK FILE SYSTEM

Network File System is a distributed file system, which is

developed by Sun Microsystems in 1984. NFS is allowing

user on client computer to access files over a computer

network like a user local storage. It is based on Sun’s RPC

version 2 protocol. NFSv2, published in 1985, was a 32-

bit implementation of the protocol and used UDP

exclusively as its transport mechanism. NFSv3, published

in 1994, added TCP to its transport mechanism and was

extended to 64-bit files.

© IJCIRAS | ISSN (O) - 2581-5334

August 2019 | Vol. 2 Issue. 3

IJCIRAS1317 WWW.IJCIRAS.COM 40

The latest version, NFSv4, published in 2000, is well-

suited for complex WAN deployment and fire-walled

architectures, has a stronger security (public and private

key) and improved multi-platform support. It adds

persistent, client-side caching and support for Access

Control List (ACLs).

4.1. Naming and Location

Naming is a mapping between physical and logical

objects. Users work with file names representing logical

data objects, while the system deals with physical

objects (blocks of data) stored on disk.

Network file system makes no distinction between

clients and servers. That is, a workstation may behave as

a server, exporting files, and may also behave as a client,

requesting file access on another workstation.

Each network file system client sees a Unix file

namespace with a private root. The sub-trees that the

NFS servers export are bound to this root file system, by

using an extension of the Unix mount mechanism. Since

the mounted sub-tree may be renamed on the client

side, there is no guarantee that the shared namespace is

identical at all workstations. Only previously mounted

remote directories can be accessed transparently.

4.2. Caching and Replication

NFS clients cache disk blocks in the main memory (I/O

buffer cache). Therefore, even if present, local disks are

not used for caching. NFS uses a data caching scheme

that relies on polling by the client. At the same time as

a client caches a file, a timestamp is cached. This

timestamp indicates the time when the file was last

modified. This is used in validating the data before it is

cached, always performed when a file is opened.

When a file is opened, a cache validation check is

performed on its parent directory as well. If the cached

timestamp coincides with the timestamp on the server,

the client pulls the data. If they don’t coincide, and the

server’s timestamp is more recent, the client machine

invalidates the cached data and reattaches them on

demand.

When data is placed into the cache, it is considered valid

for a short length of time. During this time period the

client will use the cached data without verifying its

modification time with the server.

Directory caching for reading is performed in a similar

way as file caching, but modification to them are

performed directly on the server. File and directories

don’t have the same revalidation intervals. The

techniques used between the server and the client may

be either read-ahead or delayed-write [3].

4.3. Crash Recovery

NFS is a stateless protocol. Hence, the server does not

need to keep information about which clients it is

serving or which files the clients have open. A benefit of

this approach is that there is no need to do state

recovery after a server or client has crashed and

rebooted, making the NFS crash recovery simple and

normally transparent to the user program.

When a server crashes, the client re-sends the requests

until a response is received (data will never be lost due

to a server crash) and the server does no crash recovery

at all. File operation requests are retransmitted many

times without getting any response. These operations

are idempotent. An idempotent operation has the same

effect and returns the same output if executed

consecutively [5].NFS client opens a file it will receive file

handles from a server.

In this way an NFS server that becomes available after a

crash, will be able to recognize which file the modified

data belongs to. When a client crashes no recovery is

necessary for either the server or the client.

4.4. Security

The mechanism used by NFS when performing access

checks is based on the underlying Unix file protection.

Each remote procedure call (RPC) request from a client

sends the user’s identity along with the request. The

server assumes the identity and each file access while

servicing the request is handled as if the user had logged

in directly to the server.

In the earlier versions of NFS, mutual trust was assumed

between all participating machines. The client machine

determined the user’s identity which was accepted,

without further validation, by a server. Requests made

on behalf of root were treated by the server as if they

come from a non-existent user, nobody. Hence, root

received the lowest privileges for remote files [2].

With more recent version of NFS higher level of security

was introduced. To validate RPC requests, mutual

© IJCIRAS | ISSN (O) - 2581-5334

August 2019 | Vol. 2 Issue. 3

IJCIRAS1317 WWW.IJCIRAS.COM 41

authentication was used. The common key needed for

mutual authentication, which is obtained from

information stored in a readable database. In database,

stores a pair of keys suitable for public key encryption

for every user and server.

One key of the pair is stored in clear, is stored encrypted

with the login password of the user. Any two entities

registered in the database can deduce a unique data

encryption standard (DES) key for mutual

authentication.

5.IOZONE

IOzone is a file system benchmark tool. It can generate

and measures a variety of file operations. IOzone has

been ported to many machines and runs under many

operating systems. This section will cover the many

different types of operations that are tested as well as all

of the command line options. The benchmark tests file

I/O performance for the following operations. Read,

write, re-read, re-write, read backwards, read strided,

fread, fwrite, random read/write, pread/pwrite variants,

aio_read, aio_write, mmap.

Although this accelerates the I/O for those few

applications it is also likely that the system may not

perform well for other applications that were not

targeted by the operating system. An example of this

type of enhancement is: database. Many operating

systems have tested and tuned the file system so it

works well with databases.

By using IOzone to get broad file system performance

coverage the buyer is much more likely to see any hot

or cold spots and pick a platform and operating system

that is more well balanced [7].

5.1. Building Iozone

Once obtained the source for IOzone, there have twelve

files. They are

1. libasync.c (source code)

2. makefile (makefile)

3. IOzone.c (source code)

4. libbif.c (source code)

5. IOzone_msword_98.doc - documentation in

word format

6. gnuplot.dem -sample gnuplot file

7. gnuplotps.dem -sample gnuplot file that

generates postscript output

8. IOzone.1 - documentation in nroff format

9. read_telemetry -sample file for read telemetry

file

10. write_telemetry - sample file for write telemetry

file

11. run_rules.doc - run rules to get reasonable

results

12. changes.txt -log of changes to IOzone since its

beginning

The make-file will display a list of supported platforms.

Pick the one that matches configuration and then type:

make target. There is no need to have any install

procedures as IOzone creates all of its files in the current

working directory

5.1. Definition of Tests

Write: This test measures the performance of writing a

new file. When a new file is written not only does the

data need to be stored but also the overhead

information for keeping track of where the data is

located on the storage media. This overhead is called the

metadata.

It consists of the directory information, the space

allocation and any other data associated with a file that

is not part of the data contained in the file. It is normal

for the initial write performance to be lower than the

performance of rewriting a file due to this overhead

information.

Re-write: This test measures the performance of writing

a file that already exists. When a file is written that

already exists the work required is less as the metadata

already exists. It is normal for the rewrite performance

to be higher than the performance of writing a new file.

Read: This test measures the performance of reading an

existing file.

Re-Read: This test measures the performance of reading

a file that was recently read. It is normal for the

performance to be higher as the operating system

generally maintains a cache of the data for files that

were recently read. This cache can be used to satisfy

reads and improves the performance [7].

6.SYSTEM DESIGN

In this system, NFS client analyzes the file system

performance using IOzone benchmark tool. The write

test measured the performance of writing a new file in

© IJCIRAS | ISSN (O) - 2581-5334

August 2019 | Vol. 2 Issue. 3

IJCIRAS1317 WWW.IJCIRAS.COM 42

distributed files system space. The file sizes tested were:

1 MB, 4 MB, 16 MB, 256 MB, 512 MB and 1 GB. File size

2GB is tested to get more accurate in NFS optimization.

Each file was created using a record size (the amount of

data written into a file during a single IO operation) of

4KB. For each file size the standard test was repeated

every 5 minutes several times by using a batch script.

The test’s results were directed to a log file which later

on was parsed by Report Generation to create the Excel

file with chart.

Figure 1 System design

To get the accurate result of NFS performance, need to

measure repeatedly in several time with Iozone. So, use

a batch script file of each file size with the following

command:

set count=0

:while

if %count% == 7 goto end

Z:\iozone\iozone -Rac -s 1G -r 4k -i 0 -i 1 -U Z:/ >>

logfile.txt

pause 5

set /a count = %count%+1

goto while

:end

System design is shown in Figure 1.

6.1. Optimization of System

To optimize the NFS Performance we use the best

transfer size 32 KB of NFS Version 3 in both rsize and

wsize where we mount. Use TCP+UDP protocol to

overcome the disadvantage of TCP protocol.

6.2. Implementation Results

To implement this system,

• In Servers, we use Window Server ®2008.

• In Client, we use Window 7.

Report generator is as shown in Figure 2.

Figure 2 Report generator

The average performance of the proposed system test

with record size 4k bytes is shown in Figure 3.

Figure 3 Network file system average performance

When the user select read and click average, the results

are shown in Figure 4.

ad
NFS

AnIOz

Rep

ort
logf

 NFS Server

 NFS protocol

© IJCIRAS | ISSN (O) - 2581-5334

August 2019 | Vol. 2 Issue. 3

IJCIRAS1317 WWW.IJCIRAS.COM 43

Figure 4 Network file system average read performance

The graph shows the best performance in file size 1M

byte when the user select write and click average as

shown in Figure 5.

Figure 5 Network file system average writes performance

The graph decreases with increased file size 4M bytes

and fall down to 256M bytes due to cache exceeded as

shown in Figure 6.

Figure 6 Network file system average re-read

performance

Re-Write performance in 16M file sizes is shown in

Figure 7.

Figure 7 Network file system averages re-write

performance

When the user select optimization and click average, the

results are shown in Figure 8.

Figure 8 Optimization of system performance

7. CONCLUSION

The distributed file systems are widely used in

supercomputers, clusters and data centers. Network file

system provides can access the remote data. In this

paper discuss about how to work network file system

average performance, read performance, writes

performance, re-read performance, re-write

performance and optimization of system performance.

© IJCIRAS | ISSN (O) - 2581-5334

August 2019 | Vol. 2 Issue. 3

IJCIRAS1317 WWW.IJCIRAS.COM 44

8.ACKNOWLEDGEMENT

The author wishes to express his truthfully thanks to

Daw Moh Moh Khaing, Lecture , department of

Information Technology , Technological University

(Taunggyi), for her invaluable attitude, suggestions and

encouragement for the completion of this paper. Finally,

the author would like to acknowledge the very

considerable contribution of his parents and all teachers

from Information Technology department,

Technological University Taunggyi and all those who

gave up most effort on his way of living and to all of his

friends and sisters, very helpful persons for his

progression.

REFERENCES

[1] http://en.wikipedia.org/wiki/Distributed_file_system

[2] C. Eriksen, “Comparison of NFS, Samba, OpenAFS”,

OSLO University College, June 2005.

[3] Inc. 1998 Sun Microsystems, Network programming

(Ascend McNair Conference), the Graduate Center

of the City University of New York, 2001

[4] E. Zadok, Linux NFS and Automounter

Administration: SYBEX, 2001.

[5] M. Burgess, “Analytical Network and System

Administration”, WILEY, 2004.

[6] William D. Norcott ,“Iozone Filesystem Benchmark”.

[7] http://www.iozone.org

http://www.iozone.org/

