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Abstract 

Linear motors have many advantages compared to 

rotary motors due to directly creating linear motion 

without gears or belts. The difficulties of designing 

the controller are that we need the tracking of 

position and velocity and to guarantee that the 

voltage control and its variation are small enough. 

Model predictive control (MPC) is an advanced 

method of control that needs the corresponding 

predictive model. This work proposes the model 

predictive control with the constraints of voltage 

control and its variation. The numerical simulation 

validates the performance of the proposed 

controller. 
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1. INTRODUCTION 

In recent years, control for Linear motor has been the 

focus of active research. Many nonlinear control laws 

have been applied for linear motors, such as the 

adaptive fuzzy-neural network method in [1]. The rotor-

position-tracking proportional-integral (PI) controller is 

used to estimate rotor velocity to control the position 

error converge to zero [2]. In [3] presented the adaptive 

backstepping control law for linear induction motor in 

the presence of friction dynamic effects. Process control 

has widely adopted predictive model control (MPC) to 

address optimization problems. A nonlinear model 

predictive control (NMPC) strategy requires formulating 

an optimization problem. In linear models, the MPC 

problem is typically a quadratic or linear program, and 

there is a variety of numerical methods and software [4]. 

In [5], the control design used a linearized state-space 

represented for the nonlinear dynamic model that 

describes the dynamics and a quadratic programming 

(QP) procedure to solve the resulting online 

optimization problem. However, the numerical 

complexity of linear MPC may be a good challenge, and 

it is limited in its industry, such as motor control. We 

propose the control law based on combining multi-

parametric programming is described as the offline MPC 

solution is approached by employing the principles of 

multi-parametric nonlinear programming and in 

particular optimality conditions [5]. In this paper, the 

authors use the model based on cascade structure. The 

current loop (inner loop) is designed on the dynamic 

coordinate dq.  

 

2. CONTROL DESIGN 

We consider the modeling of the linear motor as in [6-

9]: 
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In this study, multi-parametric programming is applied 

to control the current loop (inner loop). 

 

2.1 Control design for the current loop 

 

Consider the current loop model: 
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Define the tracking error variables for the inner loop as:  
d

sd sd sde i i= − , d

sq sq sqe i i= − . 

By using the coordinate transformation (3), we obtain 

the exact linearized PMLSM is described in (4):  
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Define: 
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we receive  the model (4) in state-space as follows:  

c c

dx
A x B w

dt
= + .                           (5) 

For using the results of MPC, discretize above model, we 

obtain:  

( 1) ( ) ( )x k Ax k Bw k+ = +                     (6) 

where c sTA
A e=  , ( )1

ccB A A I B−= −  and 
sT  is the sample 

time. 

The predictive model of (6) at k  as follows: 
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With N  is the prediction horizon. The sake of designing 

an MPC controller is to optimize the under cost-

function:  
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Where Q , 0R  .  

We denote that  
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From predictive model: 
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So that, we rewrite:  
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 And substituting into (8), we obtain: 
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Rewrite the above conditions on the whole of the 

prediction horizon, one gets:  

min maxs sI a X I a−   −                    (11) 

We see that 
0
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Consider the constrained conditions of voltages in (9): 
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we refer to: 
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Rewrite it for the whole of the prediction horizon we 

obtain: 
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Summary, multi-parametric programming is used to 

solve: 
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2.2. Control design for the outer-loop 

 

From (1), the  control law for this subsystem is chosen: 
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3. SIMULATION RESULTS 

 

This section implements our simulation studies to verify 

the proposed control law. The parameters of PMLSM is 

given in the following table: 

 

Parameter Value 

Number of Pole 2 

Pole step 80 mm 

Rotor mass 4.54kg 

Phase coil Resistance 3.2  

d-axis inductance 2.7 mH 

q-axis inductance 2.74 mH 

Flux  0.85Wb 

 

Table 1. The parameters of PMLSM P01-

48x210/690x840-C 

 

Considering the desired trajectory of motors is 

expressed by: ( )dx t t= , we obtain the following efficient: 
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Figure 1. actual trajectory and control signal with 

constrainted MPC 

 

Figure 1 describes responses of PMLSM in case of the 

desired trajectory is ( )dx t t=  and constraint conditions 

responses of the motor when the input voltage   is 

limited by 
max 90squ V= . 

3. CONCLUSIONS 

In this study, the MPC controller is designed for the 

linear motor with constraints on voltage inputs and state 

variables. The MPC controller is designed for the linear 

motor with voltage inputs and state variables 

constraints. The multi-parametric programming method 

is applied to solve the optimal offline problem. This work 

enables to development the application of MPC for 

motion control problems.  
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